ardupilot/ArduCopter/control_autotune.pde

862 lines
41 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if AUTOTUNE_ENABLED == ENABLED
/*
* control_autotune.pde - init and run calls for autotune flight mode
*
* Instructions:
* 1) Set up one flight mode switch position to be AltHold.
* 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch.
* 3) Ensure the ch7 or ch8 switch is in the LOW position.
* 4) Wait for a calm day and go to a large open area.
* 5) Take off and put the vehicle into AltHold mode at a comfortable altitude.
* 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning:
* a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back.
* b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests).
* When you release the sticks it will continue auto tuning where it left off.
* c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs.
* d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered.
* 7) When the tune completes the vehicle will change back to the original PID gains.
* 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains.
* 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains.
* 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently.
* If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm
*
* What it's doing during each "twitch":
* a) invokes 90 deg/sec rate request
* b) records maximum "forward" roll rate and bounce back rate
* c) when copter reaches 20 degrees or 1 second has passed, it commands level
* d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P
* e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec)
* f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec)
* g) increases rate P until the max rotate rate becomes greater than the requeste rate (90deg/sec)
* h) invokes a 20deg angle request on roll or pitch
* i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg)
* j) decreases stab P by 25%
*
* Notes: AUTOTUNE should not be set-up as a flight mode, it should be invoked only from the ch7/ch8 switch.
*
*/
#define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 500 // timeout for tuning mode's testing step
#define AUTOTUNE_TARGET_ANGLE_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_CDS 9000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_LEVEL_ANGLE_CD 300 // angle which qualifies as level
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 250 // time we require the copter to be level
#define AUTOTUNE_AGGRESSIVENESS 0.1f // tuning for 10% overshoot
#define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term
#define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term
#define AUTOTUNE_SP_STEP 0.5f // minimum increment when increasing/decreasing Stab P term
#define AUTOTUNE_SP_BACKOFF 0.75f // Stab P gains are reduced to 75% of their maximum value discovered during tuning
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
#define AUTOTUNE_RP_RATIO_FINAL 1.0f // I is set 1x P after testing
#define AUTOTUNE_RD_MIN 0.002f // minimum Rate D value
#define AUTOTUNE_RD_MAX 0.020f // maximum Rate D value
#define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value
#define AUTOTUNE_RP_MAX 0.35f // maximum Rate P value
#define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value
#define AUTOTUNE_SUCCESS_COUNT 4 // how many successful iterations we need to freeze at current gains
// Auto Tune message ids for ground station
#define AUTOTUNE_MESSAGE_STARTED 0
#define AUTOTUNE_MESSAGE_STOPPED 1
#define AUTOTUNE_MESSAGE_SUCCESS 2
#define AUTOTUNE_MESSAGE_FAILED 3
// autotune modes (high level states)
enum AutoTuneTuneMode {
AUTOTUNE_MODE_UNINITIALISED = 0, // autotune has never been run
AUTOTUNE_MODE_TUNING = 1, // autotune is testing gains
AUTOTUNE_MODE_SUCCESS = 2, // tuning has completed, user is flight testing the new gains
AUTOTUNE_MODE_FAILED = 3, // tuning has failed, user is flying on original gains
};
// steps performed while in the tuning mode
enum AutoTuneStepType {
AUTOTUNE_STEP_WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch
AUTOTUNE_STEP_TWITCHING = 1, // autotune has begun a twitch and is watching the resulting vehicle movement
AUTOTUNE_STEP_UPDATE_GAINS = 2 // autotune has completed a twitch and is updating the gains based on the results
};
// things that can be tuned
enum AutoTuneAxisType {
AUTOTUNE_AXIS_ROLL = 0, // roll axis is being tuned (either angle or rate)
AUTOTUNE_AXIS_PITCH = 1 // pitch axis is being tuned (either angle or rate)
};
// mini steps performed while in Tuning mode, Testing step
enum AutoTuneTuneType {
AUTOTUNE_TYPE_RD_UP = 0, // rate D is being tuned up
AUTOTUNE_TYPE_RD_DOWN = 1, // rate D is being tuned down
AUTOTUNE_TYPE_RP_UP = 2, // rate P is being tuned up
AUTOTUNE_TYPE_SP_UP = 3 // angle P is being tuned up
};
// autotune_state_struct - hold state flags
struct autotune_state_struct {
AutoTuneTuneMode mode : 2; // see AutoTuneTuneMode for what modes are allowed
uint8_t pilot_override : 1; // 1 = pilot is overriding controls so we suspend tuning temporarily
AutoTuneAxisType axis : 1; // see AutoTuneAxisType for which things can be tuned
uint8_t positive_direction : 1; // 0 = tuning in negative direction (i.e. left for roll), 1 = positive direction (i.e. right for roll)
AutoTuneStepType step : 2; // see AutoTuneStepType for what steps are performed
AutoTuneTuneType tune_type : 2; // see AutoTuneTuneType
} autotune_state;
// variables
static uint32_t autotune_override_time; // the last time the pilot overrode the controls
static float autotune_test_min; // the minimum angular rate achieved during TESTING_RATE step
static float autotune_test_max; // the maximum angular rate achieved during TESTING_RATE step
static uint32_t autotune_step_start_time; // start time of current tuning step (used for timeout checks)
static int8_t autotune_counter; // counter for tuning gains
static float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp; // backup of currently being tuned parameter values
static float orig_pitch_rp = 0, orig_pitch_ri, orig_pitch_rd, orig_pitch_sp; // backup of currently being tuned parameter values
static float tune_roll_rp, tune_roll_rd, tune_roll_sp; // currently being tuned parameter values
static float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp; // currently being tuned parameter values
// autotune_init - should be called when autotune mode is selected
static bool autotune_init(bool ignore_checks)
{
bool success = true;
switch (autotune_state.mode) {
case AUTOTUNE_MODE_FAILED:
// autotune has been run but failed so reset state to uninitialised
autotune_state.mode = AUTOTUNE_MODE_UNINITIALISED;
// no break to allow fall through to restart the tuning
case AUTOTUNE_MODE_UNINITIALISED:
// autotune has never been run
success = autotune_start(false);
if (success) {
// so store current gains as original gains
autotune_backup_gains_and_initialise();
// advance mode to tuning
autotune_state.mode = AUTOTUNE_MODE_TUNING;
// send message to ground station that we've started tuning
autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED);
}
break;
case AUTOTUNE_MODE_TUNING:
// we are restarting tuning after the user must have switched ch7/ch8 off so we restart tuning where we left off
success = autotune_start(false);
if (success) {
// reset gains to tuning-start gains (i.e. low I term)
autotune_load_intra_test_gains();
// write dataflash log even and send message to ground station
Log_Write_Event(DATA_AUTOTUNE_RESTART);
autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED);
}
break;
case AUTOTUNE_MODE_SUCCESS:
// we have completed a tune and the pilot wishes to test the new gains in the current flight mode
// so simply apply tuning gains (i.e. do not change flight mode)
autotune_load_tuned_gains();
Log_Write_Event(DATA_AUTOTUNE_PILOT_TESTING);
break;
}
return success;
}
// autotune_stop - should be called when the ch7/ch8 switch is switched OFF
static void autotune_stop()
{
// set gains to their original values
autotune_load_orig_gains();
// re-enable angle-to-rate request limits
attitude_control.limit_angle_to_rate_request(true);
// log off event and send message to ground statoin
autotune_update_gcs(AUTOTUNE_MESSAGE_STOPPED);
Log_Write_Event(DATA_AUTOTUNE_OFF);
// Note: we leave the autotune_state.mode as it was so that we know how the autotune ended
// we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch
}
// autotune_start - initialise autotune flight mode
static bool autotune_start(bool ignore_checks)
{
// only allow flip from Stabilize or AltHold flight modes
if (control_mode != STABILIZE && control_mode != ALT_HOLD) {
return false;
}
// ensure throttle is above zero
if (g.rc_3.control_in <= 0) {
return false;
}
// ensure we are flying
if (!motors.armed() || !ap.auto_armed || ap.land_complete) {
return false;
}
// initialize vertical speeds and leash lengths
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
pos_control.set_accel_z(g.pilot_accel_z);
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
return true;
}
// autotune_run - runs the autotune flight mode
// should be called at 100hz or more
static void autotune_run()
{
int16_t target_roll, target_pitch;
float target_yaw_rate;
int16_t target_climb_rate;
// if not auto armed set throttle to zero and exit immediately
// this should not actually be possible because of the autotune_init() checks
if(!ap.auto_armed) {
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
attitude_control.set_throttle_out(0, false);
pos_control.set_alt_target_to_current_alt();
return;
}
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// get pilot desired lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch);
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
// check for pilot requested take-off - this should not actually be possible because of autotune_init() checks
if (ap.land_complete && target_climb_rate > 0) {
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}
// reset target lean angles and heading while landed
if (ap.land_complete) {
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
// move throttle to between minimum and non-takeoff-throttle to keep us on the ground
attitude_control.set_throttle_out(get_throttle_pre_takeoff(g.rc_3.control_in), false);
pos_control.set_alt_target_to_current_alt();
}else{
// check if pilot is overriding the controls
if (target_roll != 0 || target_pitch != 0 || target_yaw_rate != 0.0f || target_climb_rate != 0) {
if (!autotune_state.pilot_override) {
autotune_state.pilot_override = true;
// set gains to their original values
autotune_load_orig_gains();
}
// reset pilot override time
autotune_override_time = millis();
}else if (autotune_state.pilot_override) {
// check if we should resume tuning after pilot's override
if (millis() - autotune_override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) {
autotune_state.pilot_override = false; // turn off pilot override
// set gains to their intra-test values (which are very close to the original gains)
autotune_load_intra_test_gains();
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; // set tuning step back from beginning
autotune_step_start_time = millis();
}
}
// if pilot override call attitude controller
if (autotune_state.pilot_override || autotune_state.mode != AUTOTUNE_MODE_TUNING) {
attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
}else{
// somehow get attitude requests from autotuning
autotune_attitude_control();
}
// call position controller
pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt);
pos_control.update_z_controller();
}
}
// autotune_attitude_controller - sets attitude control targets during tuning
static void autotune_attitude_control()
{
float rotation_rate; // rotation rate in radians/second
int32_t lean_angle;
// check tuning step
switch (autotune_state.step) {
case AUTOTUNE_STEP_WAITING_FOR_LEVEL:
// Note: we should be using intra-test gains (which are very close to the original gains but have lower I)
// re-enable rate limits
attitude_control.limit_angle_to_rate_request(true);
// hold level attitude
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(0.0f, 0.0f, 0.0f);
// hold the copter level for 0.25 seconds before we begin a twitch
// reset counter if we are no longer level
if ((labs(ahrs.roll_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) || (labs(ahrs.pitch_sensor) > AUTOTUNE_LEVEL_ANGLE_CD)) {
autotune_step_start_time = millis();
}
// if we have been level for a sufficient amount of time (0.25 seconds) move onto tuning step
if (millis() - autotune_step_start_time >= AUTOTUNE_REQUIRED_LEVEL_TIME_MS) {
// init variables for next step
autotune_state.step = AUTOTUNE_STEP_TWITCHING;
autotune_step_start_time = millis();
autotune_test_max = 0;
autotune_test_min = 0;
rotation_rate = 0;
// set gains to their to-be-tested values
autotune_load_twitch_gains();
}
break;
case AUTOTUNE_STEP_TWITCHING:
// Run the twitching step
// Note: we should be using intra-test gains (which are very close to the original gains but have lower I)
// disable rate limits
attitude_control.limit_angle_to_rate_request(false);
if(autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP){
// Testing increasing stabilize P gain so will set lean angle target
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
// request roll to 20deg
if (autotune_state.positive_direction) {
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(AUTOTUNE_TARGET_ANGLE_CD, 0.0f, 0.0f);
}else{
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(-AUTOTUNE_TARGET_ANGLE_CD, 0.0f, 0.0f);
}
}else{
// request pitch to 20deg
if (autotune_state.positive_direction) {
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(0.0f, AUTOTUNE_TARGET_ANGLE_CD, 0.0f);
}else{
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(0.0f, -AUTOTUNE_TARGET_ANGLE_CD, 0.0f);
}
}
} else {
// Testing rate P and D gains so will set body-frame rate targets
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
// override body-frame roll rate (rate controller will use existing pitch and yaw body-frame rates and convert to motor outputs)
if (autotune_state.positive_direction) {
attitude_control.rate_bf_roll_target(AUTOTUNE_TARGET_RATE_CDS);
}else{
attitude_control.rate_bf_roll_target(-AUTOTUNE_TARGET_RATE_CDS);
}
}else{
// override body-frame pitch rate (rate controller will use existing roll and yaw body-frame rates and convert to motor outputs)
if (autotune_state.positive_direction) {
attitude_control.rate_bf_pitch_target(AUTOTUNE_TARGET_RATE_CDS);
}else{
attitude_control.rate_bf_pitch_target(-AUTOTUNE_TARGET_RATE_CDS);
}
}
}
// capture this iterations rotation rate and lean angle
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
// 20 Hz filter on rate
rotation_rate = ToDeg(fabs(ahrs.get_gyro().x)) * 100.0f;
lean_angle = labs(ahrs.roll_sensor);
}else{
// 20 Hz filter on rate
// rotation_rate = rotation_rate + 0.55686f*(ToDeg(fabs(ahrs.get_gyro().y))*100.0f-rotation_rate);
rotation_rate = ToDeg(fabs(ahrs.get_gyro().y)) * 100.0f;
lean_angle = labs(ahrs.pitch_sensor);
}
// log this iterations lean angle and rotation rate
Log_Write_AutoTuneDetails((int16_t)lean_angle, rotation_rate);
// compare rotation rate or lean angle to previous iterations of this testing step
if(autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP){
// when tuning stabilize P gain, capture the max lean angle
if (lean_angle > autotune_test_max) {
autotune_test_max = lean_angle;
autotune_test_min = lean_angle;
}
// capture min lean angle
if (lean_angle < autotune_test_min && autotune_test_max > AUTOTUNE_TARGET_ANGLE_CD*(1-AUTOTUNE_AGGRESSIVENESS)) {
autotune_test_min = lean_angle;
}
}else{
// when tuning rate P and D gain, capture max rotation rate
if (rotation_rate > autotune_test_max) {
autotune_test_max = rotation_rate;
autotune_test_min = rotation_rate;
}
// capture min rotation rate after the rotation rate has peaked (aka "bounce back rate")
if (rotation_rate < autotune_test_min && autotune_test_max > AUTOTUNE_TARGET_RATE_CDS*0.5) {
autotune_test_min = rotation_rate;
}
}
// check for end of test conditions
// testing step time out after 0.5sec
if(millis() - autotune_step_start_time >= AUTOTUNE_TESTING_STEP_TIMEOUT_MS) {
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
if(autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP){
// stabilize P testing completes when the lean angle reaches 22deg or the vehicle has rotated 22deg
if ((lean_angle >= AUTOTUNE_TARGET_ANGLE_CD*(1+AUTOTUNE_AGGRESSIVENESS)) ||
(autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_ANGLE_CD*AUTOTUNE_AGGRESSIVENESS)) {
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
}else{
// rate P and D testing completes when the vehicle reaches 20deg
if (lean_angle >= AUTOTUNE_TARGET_ANGLE_CD) {
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
// rate P and D testing can also complete when the "bounce back rate" is at least 9deg less than the maximum rotation rate
if (autotune_state.tune_type == AUTOTUNE_TYPE_RD_UP || autotune_state.tune_type == AUTOTUNE_TYPE_RD_DOWN) {
if(autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_RATE_CDS*AUTOTUNE_AGGRESSIVENESS) {
autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS;
}
}
}
break;
case AUTOTUNE_STEP_UPDATE_GAINS:
// set gains to their intra-test values (which are very close to the original gains)
autotune_load_intra_test_gains();
// re-enable rate limits
attitude_control.limit_angle_to_rate_request(true);
// log the latest gains
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_test_min, autotune_test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp);
}else{
Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_test_min, autotune_test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp);
}
// Check results after mini-step to increase rate D gain
if (autotune_state.tune_type == AUTOTUNE_TYPE_RD_UP) {
// when tuning the rate D gain
if (autotune_test_max > AUTOTUNE_TARGET_RATE_CDS) {
// if max rotation rate was higher than target, reduce rate P
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_rp -= AUTOTUNE_RP_STEP;
// abandon tuning if rate P falls below 0.01
if(tune_roll_rp < AUTOTUNE_RP_MIN) {
tune_roll_rp = AUTOTUNE_RP_MIN;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}else{
tune_pitch_rp -= AUTOTUNE_RP_STEP;
// abandon tuning if rate P falls below 0.01
if( tune_pitch_rp < AUTOTUNE_RP_MIN ) {
tune_pitch_rp = AUTOTUNE_RP_MIN;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
// if maximum rotation rate was less than 80% of requested rate increase rate P
}else if(autotune_test_max < AUTOTUNE_TARGET_RATE_CDS*(1.0f-AUTOTUNE_AGGRESSIVENESS*2.0f) &&
((autotune_state.axis == AUTOTUNE_AXIS_ROLL && tune_roll_rp <= AUTOTUNE_RP_MAX) ||
(autotune_state.axis == AUTOTUNE_AXIS_PITCH && tune_pitch_rp <= AUTOTUNE_RP_MAX)) ) {
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_rp += AUTOTUNE_RP_STEP*2.0f;
}else{
tune_pitch_rp += AUTOTUNE_RP_STEP*2.0f;
}
}else{
// if "bounce back rate" if greater than 10% of requested rate (i.e. >9deg/sec) this is a good tune
if (autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_RATE_CDS*AUTOTUNE_AGGRESSIVENESS) {
autotune_counter++;
}else{
// bounce back was too small so reduce number of good tunes
if (autotune_counter > 0 ) {
autotune_counter--;
}
// increase rate D (which should increase "bounce back rate")
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_rd += AUTOTUNE_RD_STEP*2.0f;
// stop tuning if we hit max D
if (tune_roll_rd >= AUTOTUNE_RD_MAX) {
tune_roll_rd = AUTOTUNE_RD_MAX;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}else{
tune_pitch_rd += AUTOTUNE_RD_STEP*2.0f;
// stop tuning if we hit max D
if (tune_pitch_rd >= AUTOTUNE_RD_MAX) {
tune_pitch_rd = AUTOTUNE_RD_MAX;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
}
// Check results after mini-step to decrease rate D gain
} else if (autotune_state.tune_type == AUTOTUNE_TYPE_RD_DOWN) {
if (autotune_test_max > AUTOTUNE_TARGET_RATE_CDS) {
// if max rotation rate was higher than target, reduce rate P
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_rp -= AUTOTUNE_RP_STEP;
// reduce rate D if tuning if rate P falls below 0.01
if(tune_roll_rp < AUTOTUNE_RP_MIN) {
tune_roll_rp = AUTOTUNE_RP_MIN;
tune_roll_rd -= AUTOTUNE_RD_STEP;
// stop tuning if we hit min D
if (tune_roll_rd <= AUTOTUNE_RD_MIN) {
tune_roll_rd = AUTOTUNE_RD_MIN;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}else{
tune_pitch_rp -= AUTOTUNE_RP_STEP;
// reduce rate D if tuning if rate P falls below 0.01
if( tune_pitch_rp < AUTOTUNE_RP_MIN ) {
tune_pitch_rp = AUTOTUNE_RP_MIN;
tune_pitch_rd -= AUTOTUNE_RD_STEP;
// stop tuning if we hit min D
if (tune_pitch_rd <= AUTOTUNE_RD_MIN) {
tune_pitch_rd = AUTOTUNE_RD_MIN;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
// if maximum rotation rate was less than 80% of requested rate increase rate P
}else if(autotune_test_max < AUTOTUNE_TARGET_RATE_CDS*(1-AUTOTUNE_AGGRESSIVENESS*2.0f) &&
((autotune_state.axis == AUTOTUNE_AXIS_ROLL && tune_roll_rp <= AUTOTUNE_RP_MAX) ||
(autotune_state.axis == AUTOTUNE_AXIS_PITCH && tune_pitch_rp <= AUTOTUNE_RP_MAX)) ) {
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_rp += AUTOTUNE_RP_STEP;
}else{
tune_pitch_rp += AUTOTUNE_RP_STEP;
}
}else{
// if "bounce back rate" if less than 10% of requested rate (i.e. >9deg/sec) this is a good tune
if (autotune_test_max-autotune_test_min < AUTOTUNE_TARGET_RATE_CDS*AUTOTUNE_AGGRESSIVENESS) {
autotune_counter++;
}else{
// bounce back was too large so reduce number of good tunes
if (autotune_counter > 0 ) {
autotune_counter--;
}
// decrease rate D (which should decrease "bounce back rate")
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_rd -= AUTOTUNE_RD_STEP;
// stop tuning if we hit min D
if (tune_roll_rd <= AUTOTUNE_RD_MIN) {
tune_roll_rd = AUTOTUNE_RD_MIN;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}else{
tune_pitch_rd -= AUTOTUNE_RD_STEP;
// stop tuning if we hit min D
if (tune_pitch_rd <= AUTOTUNE_RD_MIN) {
tune_pitch_rd = AUTOTUNE_RD_MIN;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
}
// Check results after mini-step to increase rate P gain
} else if (autotune_state.tune_type == AUTOTUNE_TYPE_RP_UP) {
// if max rotation rate greater than target, this is a good tune
if (autotune_test_max > AUTOTUNE_TARGET_RATE_CDS) {
autotune_counter++;
}else{
// rotation rate was too low so reduce number of good tunes
if (autotune_counter > 0 ) {
autotune_counter--;
}
// increase rate P and I gains
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_rp += AUTOTUNE_RP_STEP;
// stop tuning if we hit max P
if (tune_roll_rp >= AUTOTUNE_RP_MAX) {
tune_roll_rp = AUTOTUNE_RP_MAX;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}else{
tune_pitch_rp += AUTOTUNE_RP_STEP;
// stop tuning if we hit max P
if (tune_pitch_rp >= AUTOTUNE_RP_MAX) {
tune_pitch_rp = AUTOTUNE_RP_MAX;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
// Check results after mini-step to increase stabilize P gain
} else if (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP) {
// if max angle reaches 22deg this is a successful tune
if (autotune_test_max > AUTOTUNE_TARGET_ANGLE_CD*(1+AUTOTUNE_AGGRESSIVENESS) ||
(autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_ANGLE_CD*AUTOTUNE_AGGRESSIVENESS)) {
autotune_counter++;
}else{
// did not reach the target angle so this is a bad tune
if (autotune_counter > 0 ) {
autotune_counter--;
}
// increase stabilize P and I gains
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_sp += AUTOTUNE_SP_STEP;
// stop tuning if we hit max P
if (tune_roll_sp >= AUTOTUNE_SP_MAX) {
tune_roll_sp = AUTOTUNE_SP_MAX;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}else{
tune_pitch_sp += AUTOTUNE_SP_STEP;
// stop tuning if we hit max P
if (tune_pitch_sp >= AUTOTUNE_SP_MAX) {
tune_pitch_sp = AUTOTUNE_SP_MAX;
autotune_counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
}
// reverse direction
autotune_state.positive_direction = !autotune_state.positive_direction;
// we've complete this step, finalise pids and move to next step
if (autotune_counter >= AUTOTUNE_SUCCESS_COUNT) {
// reset counter
autotune_counter = 0;
// move to the next tuning type
if (autotune_state.tune_type < AUTOTUNE_TYPE_SP_UP) {
autotune_state.tune_type++;
}else{
// we've reached the end of a D-up-down PI-up-down tune type cycle
autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP;
// if we've just completed roll move onto pitch
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
tune_roll_sp = tune_roll_sp * AUTOTUNE_SP_BACKOFF;
autotune_state.axis = AUTOTUNE_AXIS_PITCH;
AP_Notify::events.autotune_next_axis = 1;
}else{
tune_pitch_sp = tune_pitch_sp * AUTOTUNE_SP_BACKOFF;
tune_roll_sp = min(tune_roll_sp, tune_pitch_sp);
tune_pitch_sp = min(tune_roll_sp, tune_pitch_sp);
// if we've just completed pitch we have successfully completed the autotune
// change to TESTING mode to allow user to fly with new gains
autotune_state.mode = AUTOTUNE_MODE_SUCCESS;
autotune_update_gcs(AUTOTUNE_MESSAGE_SUCCESS);
Log_Write_Event(DATA_AUTOTUNE_SUCCESS);
// play a tone
AP_Notify::events.autotune_complete = 1;
}
}
}
// reset testing step
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL;
autotune_step_start_time = millis();
break;
}
}
// autotune_backup_gains_and_initialise - store current gains as originals
// called before tuning starts to backup original gains
static void autotune_backup_gains_and_initialise()
{
// initialise state because this is our first time
autotune_state.axis = AUTOTUNE_AXIS_ROLL;
autotune_state.positive_direction = false;
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL;
autotune_step_start_time = millis();
autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP;
// backup original pids
orig_roll_rp = g.pid_rate_roll.kP();
orig_roll_ri = g.pid_rate_roll.kI();
orig_roll_rd = g.pid_rate_roll.kD();
orig_roll_sp = g.p_stabilize_roll.kP();
orig_pitch_rp = g.pid_rate_pitch.kP();
orig_pitch_ri = g.pid_rate_pitch.kI();
orig_pitch_rd = g.pid_rate_pitch.kD();
orig_pitch_sp = g.p_stabilize_pitch.kP();
// initialise tuned pid values
tune_roll_rp = g.pid_rate_roll.kP();
tune_roll_rd = g.pid_rate_roll.kD();
tune_roll_sp = g.p_stabilize_roll.kP();
tune_pitch_rp = g.pid_rate_pitch.kP();
tune_pitch_rd = g.pid_rate_pitch.kD();
tune_pitch_sp = g.p_stabilize_pitch.kP();
Log_Write_Event(DATA_AUTOTUNE_INITIALISED);
}
// autotune_load_orig_gains - set gains to their original values
// called by autotune_stop and autotune_failed functions
static void autotune_load_orig_gains()
{
// sanity check the original gains
if (orig_roll_rp != 0 && orig_pitch_rp != 0) {
g.pid_rate_roll.kP(orig_roll_rp);
g.pid_rate_roll.kI(orig_roll_ri);
g.pid_rate_roll.kD(orig_roll_rd);
g.p_stabilize_roll.kP(orig_roll_sp);
g.pid_rate_pitch.kP(orig_pitch_rp);
g.pid_rate_pitch.kI(orig_pitch_ri);
g.pid_rate_pitch.kD(orig_pitch_rd);
g.p_stabilize_pitch.kP(orig_pitch_sp);
}
}
// autotune_load_tuned_gains - load tuned gains
static void autotune_load_tuned_gains()
{
// sanity check the gains
if (tune_roll_rp != 0 && tune_pitch_rp != 0) {
g.pid_rate_roll.kP(tune_roll_rp);
g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_RP_RATIO_FINAL);
g.pid_rate_roll.kD(tune_roll_rd);
g.p_stabilize_roll.kP(tune_roll_sp);
g.pid_rate_pitch.kP(tune_pitch_rp);
g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_RP_RATIO_FINAL);
g.pid_rate_pitch.kD(tune_pitch_rd);
g.p_stabilize_pitch.kP(tune_pitch_sp);
}else{
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
// autotune_load_intra_test_gains - gains used between tests
// called during testing mode's update-gains step to set gains ahead of return-to-level step
static void autotune_load_intra_test_gains()
{
// we are restarting tuning so reset gains to tuning-start gains (i.e. low I term)
// sanity check the original gains
if (orig_roll_rp != 0 && orig_pitch_rp != 0) {
g.pid_rate_roll.kP(orig_roll_rp);
g.pid_rate_roll.kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
g.pid_rate_roll.kD(orig_roll_rd);
g.p_stabilize_roll.kP(orig_roll_sp);
g.pid_rate_pitch.kP(orig_pitch_rp);
g.pid_rate_pitch.kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
g.pid_rate_pitch.kD(orig_pitch_rd);
g.p_stabilize_pitch.kP(orig_pitch_sp);
}else{
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
// autotune_load_twitch_gains - load the to-be-tested gains for a single axis
// called by autotune_attitude_control() just before it beings testing a gain (i.e. just before it twitches)
static void autotune_load_twitch_gains()
{
if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) {
if (tune_roll_rp != 0) {
g.pid_rate_roll.kP(tune_roll_rp);
g.pid_rate_roll.kI(tune_roll_rp*0.01f);
g.pid_rate_roll.kD(tune_roll_rd);
g.p_stabilize_roll.kP(tune_roll_sp);
}else{
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}else{
if (tune_pitch_rp != 0) {
g.pid_rate_pitch.kP(tune_pitch_rp);
g.pid_rate_pitch.kI(tune_pitch_rp*0.01f);
g.pid_rate_pitch.kD(tune_pitch_rd);
g.p_stabilize_pitch.kP(tune_pitch_sp);
}else{
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
}
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
static void autotune_save_tuning_gains()
{
// if we successfully completed tuning
if (autotune_state.mode == AUTOTUNE_MODE_SUCCESS) {
// sanity check the rate P values
if (tune_roll_rp != 0 && tune_pitch_rp != 0) {
// rate roll gains
g.pid_rate_roll.kP(tune_roll_rp);
g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_RP_RATIO_FINAL);
g.pid_rate_roll.kD(tune_roll_rd);
g.pid_rate_roll.save_gains();
// rate pitch gains
g.pid_rate_pitch.kP(tune_pitch_rp);
g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_RP_RATIO_FINAL);
g.pid_rate_pitch.kD(tune_pitch_rd);
g.pid_rate_pitch.save_gains();
// stabilize roll
g.p_stabilize_roll.kP(tune_roll_sp);
g.p_stabilize_roll.save_gains();
// stabilize pitch
g.p_stabilize_pitch.save_gains();
g.p_stabilize_pitch.kP(tune_pitch_sp);
// resave pids to originals in case the autotune is run again
orig_roll_rp = g.pid_rate_roll.kP();
orig_roll_ri = g.pid_rate_roll.kI();
orig_roll_rd = g.pid_rate_roll.kD();
orig_roll_sp = g.p_stabilize_roll.kP();
orig_pitch_rp = g.pid_rate_pitch.kP();
orig_pitch_ri = g.pid_rate_pitch.kI();
orig_pitch_rd = g.pid_rate_pitch.kD();
orig_pitch_sp = g.p_stabilize_pitch.kP();
// log save gains event
Log_Write_Event(DATA_AUTOTUNE_SAVEDGAINS);
}else{
// log an error message and fail the autotune
Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS);
}
}
}
// send message to ground station
void autotune_update_gcs(uint8_t message_id)
{
switch (message_id) {
case AUTOTUNE_MESSAGE_STARTED:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Started"));
break;
case AUTOTUNE_MESSAGE_STOPPED:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Stopped"));
break;
case AUTOTUNE_MESSAGE_SUCCESS:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Success"));
break;
case AUTOTUNE_MESSAGE_FAILED:
gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Failed"));
break;
}
}
#endif // AUTOTUNE_ENABLED == ENABLED