mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
995f5d1dad
Matches the value we send for Rover, which is useful until we can reflect on the simulation to discover its maximum range
673 lines
20 KiB
C++
673 lines
20 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
simulator connector for morse simulator
|
|
*/
|
|
|
|
#include "SIM_Morse.h"
|
|
|
|
#include <arpa/inet.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include "pthread.h"
|
|
#include <AP_HAL/utility/replace.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
using namespace SITL;
|
|
|
|
static const struct {
|
|
const char *name;
|
|
float value;
|
|
bool save;
|
|
} sim_defaults[] = {
|
|
{ "AHRS_EKF_TYPE", 10 },
|
|
{ "INS_GYR_CAL", 0 },
|
|
{ "RC1_MIN", 1000, true },
|
|
{ "RC1_MAX", 2000, true },
|
|
{ "RC2_MIN", 1000, true },
|
|
{ "RC2_MAX", 2000, true },
|
|
{ "RC3_MIN", 1000, true },
|
|
{ "RC3_MAX", 2000, true },
|
|
{ "RC4_MIN", 1000, true },
|
|
{ "RC4_MAX", 2000, true },
|
|
{ "RC2_REVERSED", 1 }, // interlink has reversed rc2
|
|
{ "SERVO1_MIN", 1000 },
|
|
{ "SERVO1_MAX", 2000 },
|
|
{ "SERVO2_MIN", 1000 },
|
|
{ "SERVO2_MAX", 2000 },
|
|
{ "SERVO3_MIN", 1000 },
|
|
{ "SERVO3_MAX", 2000 },
|
|
{ "SERVO4_MIN", 1000 },
|
|
{ "SERVO4_MAX", 2000 },
|
|
{ "SERVO5_MIN", 1000 },
|
|
{ "SERVO5_MAX", 2000 },
|
|
{ "SERVO6_MIN", 1000 },
|
|
{ "SERVO6_MAX", 2000 },
|
|
{ "SERVO6_MIN", 1000 },
|
|
{ "SERVO6_MAX", 2000 },
|
|
{ "INS_ACC2OFFS_X", 0.001 },
|
|
{ "INS_ACC2OFFS_Y", 0.001 },
|
|
{ "INS_ACC2OFFS_Z", 0.001 },
|
|
{ "INS_ACC2SCAL_X", 1.001 },
|
|
{ "INS_ACC2SCAL_Y", 1.001 },
|
|
{ "INS_ACC2SCAL_Z", 1.001 },
|
|
{ "INS_ACCOFFS_X", 0.001 },
|
|
{ "INS_ACCOFFS_Y", 0.001 },
|
|
{ "INS_ACCOFFS_Z", 0.001 },
|
|
{ "INS_ACCSCAL_X", 1.001 },
|
|
{ "INS_ACCSCAL_Y", 1.001 },
|
|
{ "INS_ACCSCAL_Z", 1.001 },
|
|
};
|
|
|
|
|
|
Morse::Morse(const char *frame_str) :
|
|
Aircraft(frame_str)
|
|
{
|
|
char *saveptr = nullptr;
|
|
char *s = strdup(frame_str);
|
|
char *frame_option = strtok_r(s, ":", &saveptr);
|
|
char *args1 = strtok_r(nullptr, ":", &saveptr);
|
|
char *args2 = strtok_r(nullptr, ":", &saveptr);
|
|
char *args3 = strtok_r(nullptr, ":", &saveptr);
|
|
/*
|
|
allow setting of IP, sensors port and control port
|
|
format morse:IPADDRESS:SENSORS_PORT:CONTROL_PORT
|
|
*/
|
|
if (args1) {
|
|
morse_ip = args1;
|
|
}
|
|
if (args2) {
|
|
morse_sensors_port = atoi(args2);
|
|
morse_control_port = morse_sensors_port+1;
|
|
}
|
|
if (args3) {
|
|
morse_control_port = atoi(args3);
|
|
}
|
|
|
|
if (strstr(frame_option, "-rover")) {
|
|
output_type = OUTPUT_ROVER_REGULAR;
|
|
} else if (strstr(frame_option, "-skid")) {
|
|
output_type = OUTPUT_ROVER_SKID;
|
|
} else if (strstr(frame_option, "-quad")) {
|
|
output_type = OUTPUT_QUAD;
|
|
} else if (strstr(frame_option, "-pwm")) {
|
|
output_type = OUTPUT_PWM;
|
|
} else {
|
|
// default to rover
|
|
output_type = OUTPUT_ROVER_REGULAR;
|
|
}
|
|
|
|
for (uint8_t i=0; i<ARRAY_SIZE(sim_defaults); i++) {
|
|
AP_Param::set_default_by_name(sim_defaults[i].name, sim_defaults[i].value);
|
|
if (sim_defaults[i].save) {
|
|
enum ap_var_type ptype;
|
|
AP_Param *p = AP_Param::find(sim_defaults[i].name, &ptype);
|
|
if (!p->configured()) {
|
|
p->save();
|
|
}
|
|
}
|
|
}
|
|
printf("Started Morse with %s:%u:%u type %u\n",
|
|
morse_ip, morse_sensors_port, morse_control_port,
|
|
(unsigned)output_type);
|
|
}
|
|
|
|
/*
|
|
very simple JSON parser for sensor data
|
|
called with pointer to one row of sensor data, nul terminated
|
|
|
|
This parser does not do any syntax checking, and is not at all
|
|
general purpose
|
|
*/
|
|
bool Morse::parse_sensors(const char *json)
|
|
{
|
|
//printf("%s\n", json);
|
|
for (uint16_t i=0; i<ARRAY_SIZE(keytable); i++) {
|
|
struct keytable &key = keytable[i];
|
|
|
|
/* look for section header */
|
|
const char *p = strstr(json, key.section);
|
|
if (!p) {
|
|
// we don't have this sensor
|
|
continue;
|
|
}
|
|
p += strlen(key.section)+1;
|
|
|
|
// find key inside section
|
|
p = strstr(p, key.key);
|
|
if (!p) {
|
|
printf("Failed to find key %s/%s\n", key.section, key.key);
|
|
return false;
|
|
}
|
|
|
|
p += strlen(key.key)+3;
|
|
switch (key.type) {
|
|
case DATA_FLOAT:
|
|
*((float *)key.ptr) = atof(p);
|
|
break;
|
|
|
|
case DATA_DOUBLE:
|
|
*((double *)key.ptr) = atof(p);
|
|
break;
|
|
|
|
case DATA_VECTOR3F: {
|
|
Vector3f *v = (Vector3f *)key.ptr;
|
|
if (sscanf(p, "[%f, %f, %f]", &v->x, &v->y, &v->z) != 3) {
|
|
printf("Failed to parse Vector3f for %s/%s\n", key.section, key.key);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DATA_VECTOR3F_ARRAY: {
|
|
// example: [[0.0, 0.0, 0.0], [-8.97607135772705, -8.976069450378418, -8.642673492431641e-07]]
|
|
if (*p++ != '[') {
|
|
return false;
|
|
}
|
|
uint16_t n = 0;
|
|
struct vector3f_array *v = (struct vector3f_array *)key.ptr;
|
|
while (true) {
|
|
if (n >= v->length) {
|
|
Vector3f *d = (Vector3f *)realloc(v->data, sizeof(Vector3f)*(n+1));
|
|
if (d == nullptr) {
|
|
return false;
|
|
}
|
|
v->data = d;
|
|
v->length = n+1;
|
|
}
|
|
if (sscanf(p, "[%f, %f, %f]", &v->data[n].x, &v->data[n].y, &v->data[n].z) != 3) {
|
|
printf("Failed to parse Vector3f for %s/%s[%u]\n", key.section, key.key, n);
|
|
return false;
|
|
}
|
|
n++;
|
|
p = strchr(p,']');
|
|
if (!p) {
|
|
return false;
|
|
}
|
|
p++;
|
|
if (p[0] != ',') {
|
|
break;
|
|
}
|
|
if (p[1] != ' ') {
|
|
return false;
|
|
}
|
|
p += 2;
|
|
}
|
|
if (p[0] != ']') {
|
|
return false;
|
|
}
|
|
v->length = n;
|
|
break;
|
|
}
|
|
|
|
case DATA_FLOAT_ARRAY: {
|
|
// example: [18.0, 12.694079399108887]
|
|
if (*p++ != '[') {
|
|
return false;
|
|
}
|
|
uint16_t n = 0;
|
|
struct float_array *v = (struct float_array *)key.ptr;
|
|
while (true) {
|
|
if (n >= v->length) {
|
|
float *d = (float *)realloc(v->data, sizeof(float)*(n+1));
|
|
if (d == nullptr) {
|
|
return false;
|
|
}
|
|
v->data = d;
|
|
v->length = n+1;
|
|
}
|
|
v->data[n] = atof(p);
|
|
n++;
|
|
p = strchr(p,',');
|
|
if (!p) {
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
v->length = n;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
socket_frame_counter++;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
connect to the required sockets
|
|
*/
|
|
bool Morse::connect_sockets(void)
|
|
{
|
|
if (!sensors_sock) {
|
|
sensors_sock = new SocketAPM(false);
|
|
if (!sensors_sock) {
|
|
AP_HAL::panic("Out of memory for sensors socket");
|
|
}
|
|
if (!sensors_sock->connect(morse_ip, morse_sensors_port)) {
|
|
usleep(100000);
|
|
if (connect_counter++ == 20) {
|
|
printf("Waiting to connect to sensors control on %s:%u\n",
|
|
morse_ip, morse_sensors_port);
|
|
connect_counter = 0;
|
|
}
|
|
delete sensors_sock;
|
|
sensors_sock = nullptr;
|
|
return false;
|
|
}
|
|
sensors_sock->reuseaddress();
|
|
printf("Sensors connected\n");
|
|
}
|
|
if (!control_sock) {
|
|
control_sock = new SocketAPM(false);
|
|
if (!control_sock) {
|
|
AP_HAL::panic("Out of memory for control socket");
|
|
}
|
|
if (!control_sock->connect(morse_ip, morse_control_port)) {
|
|
usleep(100000);
|
|
if (connect_counter++ == 20) {
|
|
printf("Waiting to connect to control control on %s:%u\n",
|
|
morse_ip, morse_control_port);
|
|
connect_counter = 0;
|
|
}
|
|
delete control_sock;
|
|
control_sock = nullptr;
|
|
return false;
|
|
}
|
|
control_sock->reuseaddress();
|
|
printf("Control connected\n");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
get any new data from the sensors socket
|
|
*/
|
|
bool Morse::sensors_receive(void)
|
|
{
|
|
ssize_t ret = sensors_sock->recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, 0);
|
|
if (ret <= 0) {
|
|
no_data_counter++;
|
|
if (no_data_counter == 1000) {
|
|
no_data_counter = 0;
|
|
delete sensors_sock;
|
|
delete control_sock;
|
|
sensors_sock = nullptr;
|
|
control_sock = nullptr;
|
|
}
|
|
return false;
|
|
}
|
|
no_data_counter = 0;
|
|
|
|
// convert '\n' into nul
|
|
while (uint8_t *p = (uint8_t *)memchr(&sensor_buffer[sensor_buffer_len], '\n', ret)) {
|
|
*p = 0;
|
|
}
|
|
sensor_buffer_len += ret;
|
|
|
|
const uint8_t *p2 = (const uint8_t *)memrchr(sensor_buffer, 0, sensor_buffer_len);
|
|
if (p2 == nullptr || p2 == sensor_buffer) {
|
|
return false;
|
|
}
|
|
const uint8_t *p1 = (const uint8_t *)memrchr(sensor_buffer, 0, p2 - sensor_buffer);
|
|
if (p1 == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
bool parse_ok = parse_sensors((const char *)(p1+1));
|
|
|
|
memmove(sensor_buffer, p2, sensor_buffer_len - (p2 - sensor_buffer));
|
|
sensor_buffer_len = sensor_buffer_len - (p2 - sensor_buffer);
|
|
|
|
return parse_ok;
|
|
}
|
|
|
|
/*
|
|
output control command assuming steering/throttle rover
|
|
*/
|
|
void Morse::output_rover_regular(const struct sitl_input &input)
|
|
{
|
|
float throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
|
float ground_steer = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
float max_steer = radians(60);
|
|
float max_speed = 20;
|
|
float max_accel = 20;
|
|
|
|
// speed in m/s in body frame
|
|
Vector3f velocity_body = dcm.transposed() * velocity_ef;
|
|
|
|
// speed along x axis, +ve is forward
|
|
float speed = velocity_body.x;
|
|
|
|
// target speed with current throttle
|
|
float target_speed = throttle * max_speed;
|
|
|
|
// linear acceleration in m/s/s - very crude model
|
|
float accel = max_accel * (target_speed - speed) / max_speed;
|
|
|
|
//force directly proportion to acceleration
|
|
float force = accel;
|
|
|
|
float steer = ground_steer * max_steer;
|
|
|
|
// construct a JSON packet for steer/force
|
|
char buf[60];
|
|
snprintf(buf, sizeof(buf)-1, "{\"steer\": %.3f, \"force\": %.2f, \"brake\": %.2f}\n",
|
|
steer, -force, 0.0);
|
|
buf[sizeof(buf)-1] = 0;
|
|
|
|
control_sock->send(buf, strlen(buf));
|
|
}
|
|
/*
|
|
output control command assuming skid-steering rover
|
|
*/
|
|
void Morse::output_rover_skid(const struct sitl_input &input)
|
|
{
|
|
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
|
const float steer_rate_max_dps = 60;
|
|
const float max_speed = 2;
|
|
|
|
const float steering_rps = (motor1 - motor2) * radians(steer_rate_max_dps);
|
|
const float speed_ms = 0.5*(motor1 + motor2) * max_speed;
|
|
|
|
// construct a JSON packet for v and w
|
|
char buf[60];
|
|
snprintf(buf, sizeof(buf)-1, "{\"v\": %.3f, \"w\": %.2f}\n",
|
|
speed_ms, -steering_rps);
|
|
buf[sizeof(buf)-1] = 0;
|
|
|
|
control_sock->send(buf, strlen(buf));
|
|
}
|
|
|
|
/*
|
|
output control command assuming a 4 channel quad
|
|
*/
|
|
void Morse::output_quad(const struct sitl_input &input)
|
|
{
|
|
const float max_thrust = 1500;
|
|
float motors[4];
|
|
for (uint8_t i=0; i<4; i++) {
|
|
motors[i] = constrain_float(((input.servos[i]-1000)/1000.0f) * max_thrust, 0, max_thrust);
|
|
}
|
|
const float &m_right = motors[0];
|
|
const float &m_left = motors[1];
|
|
const float &m_front = motors[2];
|
|
const float &m_back = motors[3];
|
|
|
|
// quad format in Morse is:
|
|
// m1: back
|
|
// m2: right
|
|
// m3: front
|
|
// m4: left
|
|
|
|
// construct a JSON packet for motors
|
|
char buf[60];
|
|
snprintf(buf, sizeof(buf)-1, "{\"engines\": [%.3f, %.3f, %.3f, %.3f]}\n",
|
|
m_back, m_right, m_front, m_left);
|
|
buf[sizeof(buf)-1] = 0;
|
|
|
|
control_sock->send(buf, strlen(buf));
|
|
}
|
|
|
|
/*
|
|
output all 16 channels as PWM values. This allows for general
|
|
control of a robot
|
|
*/
|
|
void Morse::output_pwm(const struct sitl_input &input)
|
|
{
|
|
char buf[200];
|
|
snprintf(buf, sizeof(buf)-1, "{\"pwm\": [%u, %uf, %u, %u, %u, %uf, %u, %u, %u, %uf, %u, %u, %u, %uf, %u, %u]}\n",
|
|
input.servos[0], input.servos[1], input.servos[2], input.servos[3],
|
|
input.servos[4], input.servos[5], input.servos[6], input.servos[7],
|
|
input.servos[8], input.servos[9], input.servos[10], input.servos[11],
|
|
input.servos[12], input.servos[13], input.servos[14], input.servos[15]);
|
|
buf[sizeof(buf)-1] = 0;
|
|
control_sock->send(buf, strlen(buf));
|
|
}
|
|
|
|
|
|
/*
|
|
update the Morse simulation by one time step
|
|
*/
|
|
void Morse::update(const struct sitl_input &input)
|
|
{
|
|
if (!connect_sockets()) {
|
|
return;
|
|
}
|
|
|
|
last_state = state;
|
|
|
|
if (sensors_receive()) {
|
|
// update average frame time used for extrapolation
|
|
double dt = constrain_float(state.timestamp - last_state.timestamp, 0.001, 1.0/50);
|
|
if (average_frame_time_s < 1.0e-6) {
|
|
average_frame_time_s = dt;
|
|
}
|
|
average_frame_time_s = average_frame_time_s * 0.98 + dt * 0.02;
|
|
}
|
|
|
|
double dt_s = state.timestamp - last_state.timestamp;
|
|
if (dt_s < 0 || dt_s > 1) {
|
|
// cope with restarting while connected
|
|
initial_time_s = time_now_us * 1.0e-6f;
|
|
last_time_s = state.timestamp;
|
|
return;
|
|
}
|
|
|
|
if (dt_s < 0.00001f) {
|
|
float delta_time = 0.001;
|
|
// don't go past the next expected frame
|
|
if (delta_time + extrapolated_s > average_frame_time_s) {
|
|
delta_time = average_frame_time_s - extrapolated_s;
|
|
}
|
|
if (delta_time <= 0) {
|
|
usleep(1000);
|
|
return;
|
|
}
|
|
time_now_us += delta_time * 1.0e6;
|
|
extrapolate_sensors(delta_time);
|
|
update_position();
|
|
update_mag_field_bf();
|
|
usleep(delta_time*1.0e6);
|
|
extrapolated_s += delta_time;
|
|
report_FPS();
|
|
return;
|
|
}
|
|
|
|
extrapolated_s = 0;
|
|
|
|
if (initial_time_s <= 0) {
|
|
dt_s = 0.001f;
|
|
initial_time_s = state.timestamp - dt_s;
|
|
}
|
|
|
|
// convert from state variables to ardupilot conventions
|
|
dcm.from_euler(state.pose.roll, -state.pose.pitch, -state.pose.yaw);
|
|
|
|
gyro = Vector3f(state.imu.angular_velocity[0],
|
|
-state.imu.angular_velocity[1],
|
|
-state.imu.angular_velocity[2]);
|
|
|
|
velocity_ef = Vector3f(state.velocity.world_linear_velocity[0],
|
|
-state.velocity.world_linear_velocity[1],
|
|
-state.velocity.world_linear_velocity[2]);
|
|
|
|
position = Vector3f(state.gps.x, -state.gps.y, -state.gps.z);
|
|
|
|
// Morse IMU accel is NEU, convert to NED
|
|
accel_body = Vector3f(state.imu.linear_acceleration[0],
|
|
-state.imu.linear_acceleration[1],
|
|
-state.imu.linear_acceleration[2]);
|
|
|
|
// limit to 16G to match pixhawk1
|
|
float a_limit = GRAVITY_MSS*16;
|
|
accel_body.x = constrain_float(accel_body.x, -a_limit, a_limit);
|
|
accel_body.y = constrain_float(accel_body.y, -a_limit, a_limit);
|
|
accel_body.z = constrain_float(accel_body.z, -a_limit, a_limit);
|
|
|
|
// fill in laser scanner results, if available
|
|
scanner.points = state.scanner.points;
|
|
scanner.ranges = state.scanner.ranges;
|
|
|
|
update_position();
|
|
time_advance();
|
|
uint64_t new_time_us = (state.timestamp - initial_time_s)*1.0e6;
|
|
if (new_time_us < time_now_us) {
|
|
uint64_t dt_us = time_now_us - new_time_us;
|
|
if (dt_us > 500000) {
|
|
// time going backwards
|
|
time_now_us = new_time_us;
|
|
}
|
|
} else {
|
|
time_now_us = new_time_us;
|
|
}
|
|
|
|
last_time_s = state.timestamp;
|
|
|
|
// update magnetic field
|
|
update_mag_field_bf();
|
|
|
|
switch (output_type) {
|
|
case OUTPUT_ROVER_REGULAR:
|
|
output_rover_regular(input);
|
|
break;
|
|
case OUTPUT_ROVER_SKID:
|
|
output_rover_skid(input);
|
|
break;
|
|
case OUTPUT_QUAD:
|
|
output_quad(input);
|
|
break;
|
|
case OUTPUT_PWM:
|
|
output_pwm(input);
|
|
break;
|
|
}
|
|
|
|
report_FPS();
|
|
|
|
send_report();
|
|
}
|
|
|
|
|
|
/*
|
|
report frame rates
|
|
*/
|
|
void Morse::report_FPS(void)
|
|
{
|
|
if (frame_counter++ % 1000 == 0) {
|
|
if (!is_zero(last_frame_count_s)) {
|
|
uint64_t frames = socket_frame_counter - last_socket_frame_counter;
|
|
last_socket_frame_counter = socket_frame_counter;
|
|
double dt = state.timestamp - last_frame_count_s;
|
|
printf("%.2f/%.2f FPS avg=%.2f\n",
|
|
frames / dt, 1000 / dt, 1.0/average_frame_time_s);
|
|
} else {
|
|
printf("Initial position %f %f %f\n", position.x, position.y, position.z);
|
|
}
|
|
last_frame_count_s = state.timestamp;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
send a report to the vehicle control code over MAVLink
|
|
*/
|
|
void Morse::send_report(void)
|
|
{
|
|
const uint32_t now = AP_HAL::millis();
|
|
#if defined(__CYGWIN__) || defined(__CYGWIN64__)
|
|
if (now < 10000) {
|
|
// don't send lidar reports until 10s after startup. This
|
|
// avoids a windows threading issue with non-blocking sockets
|
|
// and the initial wait on uartA
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// this is usually loopback
|
|
if (!mavlink.connected && mav_socket.connect(mavlink_loopback_address, mavlink_loopback_port)) {
|
|
::printf("Morse MAVLink loopback connected to %s:%u\n", mavlink_loopback_address, (unsigned)mavlink_loopback_port);
|
|
mavlink.connected = true;
|
|
}
|
|
if (!mavlink.connected) {
|
|
return;
|
|
}
|
|
|
|
// send a OBSTACLE_DISTANCE messages at 15 Hz
|
|
if (now - send_report_last_ms >= (1000/15) && scanner.points.length == scanner.ranges.length && scanner.points.length > 0) {
|
|
send_report_last_ms = now;
|
|
|
|
mavlink_obstacle_distance_t packet {};
|
|
packet.time_usec = AP_HAL::micros64();
|
|
packet.min_distance = 1;
|
|
// the simulated rangefinder has an imposed 18m limit in
|
|
// e.g. rover_scanner.py
|
|
packet.max_distance = 5000;
|
|
packet.sensor_type = MAV_DISTANCE_SENSOR_LASER;
|
|
packet.increment = 0; // use increment_f
|
|
|
|
packet.angle_offset = 180;
|
|
packet.increment_f = (-5); // NOTE! This is negative because the distances[] arc is counter-clockwise
|
|
|
|
for (uint8_t i=0; i<MAVLINK_MSG_OBSTACLE_DISTANCE_FIELD_DISTANCES_LEN; i++) {
|
|
|
|
if (i >= scanner.points.length) {
|
|
packet.distances[i] = 65535;
|
|
continue;
|
|
}
|
|
|
|
// convert m to cm and sanity check
|
|
const Vector2f v = Vector2f(scanner.points.data[i].x, scanner.points.data[i].y);
|
|
const float distance_cm = v.length()*100;
|
|
if (distance_cm < packet.min_distance) {
|
|
packet.distances[i] = packet.max_distance + 1; // "no obstacle"
|
|
continue;
|
|
}
|
|
|
|
if (distance_cm > packet.max_distance) {
|
|
packet.distances[i] = packet.max_distance + 1; // "no obstacle"
|
|
continue;
|
|
}
|
|
|
|
packet.distances[i] = distance_cm;
|
|
}
|
|
|
|
mavlink_message_t msg;
|
|
mavlink_status_t *chan0_status = mavlink_get_channel_status(MAVLINK_COMM_0);
|
|
uint8_t saved_seq = chan0_status->current_tx_seq;
|
|
chan0_status->current_tx_seq = mavlink.seq;
|
|
uint16_t len = mavlink_msg_obstacle_distance_encode(
|
|
mavlink_system.sysid,
|
|
13,
|
|
&msg, &packet);
|
|
chan0_status->current_tx_seq = saved_seq;
|
|
|
|
uint8_t msgbuf[len];
|
|
len = mavlink_msg_to_send_buffer(msgbuf, &msg);
|
|
if (len > 0) {
|
|
mav_socket.send(msgbuf, len);
|
|
}
|
|
}
|
|
|
|
}
|