ardupilot/libraries/AP_HAL_AVR_SITL/Scheduler.cpp
Andrew Tridgell 0695277773 HAL_SITL: use pthread barriers for synthetic clock synchronisation
this avoids siganls and provides a race free way of keeping time in
lock step
2015-04-13 06:05:55 +10:00

341 lines
8.0 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
#include "AP_HAL_AVR_SITL.h"
#include "Scheduler.h"
#include <sys/time.h>
#include <unistd.h>
#include <fenv.h>
#include <signal.h>
#include <pthread.h>
#ifdef __CYGWIN__
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <windows.h>
#include <string.h>
#include <memory.h>
#include <process.h>
#include <time.h>
#endif
using namespace AVR_SITL;
extern const AP_HAL::HAL& hal;
AP_HAL::Proc SITLScheduler::_failsafe = NULL;
volatile bool SITLScheduler::_timer_suspended = false;
volatile bool SITLScheduler::_timer_event_missed = false;
AP_HAL::MemberProc SITLScheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
uint8_t SITLScheduler::_num_timer_procs = 0;
bool SITLScheduler::_in_timer_proc = false;
AP_HAL::MemberProc SITLScheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
uint8_t SITLScheduler::_num_io_procs = 0;
bool SITLScheduler::_in_io_proc = false;
struct timeval SITLScheduler::_sketch_start_time;
#ifdef __CYGWIN__
double SITLScheduler::_cyg_freq = 0;
long SITLScheduler::_cyg_start = 0;
#endif
static void sigcont_handler(int)
{
}
SITLScheduler::SITLScheduler(SITL_State *sitlState) :
_sitlState(sitlState),
stopped_clock_usec(0)
{
signal(SIGCONT, sigcont_handler);
pthread_barrier_init(&clock_barrier, NULL, 2);
}
void SITLScheduler::init(void *unused)
{
gettimeofday(&_sketch_start_time,NULL);
#ifdef __CYGWIN__
LARGE_INTEGER lFreq, lCnt;
QueryPerformanceFrequency(&lFreq);
_cyg_freq = (double)lFreq.LowPart;
QueryPerformanceCounter(&lCnt);
_cyg_start = lCnt.LowPart;
#endif
}
#ifdef __CYGWIN__
double SITLScheduler::_cyg_sec()
{
LARGE_INTEGER lCnt;
long tcnt;
QueryPerformanceCounter(&lCnt);
tcnt = lCnt.LowPart - _cyg_start;
return ((double)tcnt) / _cyg_freq;
}
#endif
uint64_t SITLScheduler::_micros64()
{
#ifdef __CYGWIN__
return (uint64_t)(_cyg_sec() * 1.0e6);
#else
struct timeval tp;
gettimeofday(&tp,NULL);
uint64_t ret = 1.0e6*((tp.tv_sec + (tp.tv_usec*1.0e-6)) -
(_sketch_start_time.tv_sec +
(_sketch_start_time.tv_usec*1.0e-6)));
return ret;
#endif
}
uint64_t SITLScheduler::micros64()
{
if (stopped_clock_usec) {
return stopped_clock_usec;
}
return _micros64();
}
uint32_t SITLScheduler::micros()
{
return micros64() & 0xFFFFFFFF;
}
uint64_t SITLScheduler::millis64()
{
if (stopped_clock_usec) {
return stopped_clock_usec/1000;
}
#ifdef __CYGWIN__
// 1000 ms in a second
return (uint64_t)(_cyg_sec() * 1000);
#else
struct timeval tp;
gettimeofday(&tp,NULL);
uint64_t ret = 1.0e3*((tp.tv_sec + (tp.tv_usec*1.0e-6)) -
(_sketch_start_time.tv_sec +
(_sketch_start_time.tv_usec*1.0e-6)));
return ret;
#endif
}
uint32_t SITLScheduler::millis()
{
return millis64() & 0xFFFFFFFF;
}
extern AVR_SITL::SITL_State *g_state;
void SITLScheduler::delay_microseconds(uint16_t usec)
{
uint64_t start = micros64();
uint64_t dtime;
while ((dtime=(micros64() - start) < usec)) {
if (stopped_clock_usec) {
/*
we are using a synthetic clock. We want to wait until
the stop_clock() call advances the clock
*/
pthread_barrier_wait(&clock_barrier);
} else {
usleep(usec - dtime);
}
}
}
void SITLScheduler::delay(uint16_t ms)
{
while (ms > 0) {
delay_microseconds(1000);
ms--;
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
void SITLScheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void SITLScheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
}
}
void SITLScheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
}
}
void SITLScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void SITLScheduler::suspend_timer_procs() {
_timer_suspended = true;
}
void SITLScheduler::resume_timer_procs() {
_timer_suspended = false;
if (_timer_event_missed) {
_timer_event_missed = false;
_run_timer_procs(false);
}
}
bool SITLScheduler::in_timerprocess() {
return _in_timer_proc || _in_io_proc;
}
bool SITLScheduler::system_initializing() {
return !_initialized;
}
void SITLScheduler::system_initialized() {
if (_initialized) {
panic(
PSTR("PANIC: scheduler system initialized called more than once"));
}
if (_sitlState->_sitl == NULL || _sitlState->_sitl->float_exception) {
feenableexcept(FE_INVALID | FE_OVERFLOW | FE_DIVBYZERO);
} else {
feclearexcept(FE_INVALID | FE_OVERFLOW | FE_DIVBYZERO);
}
_initialized = true;
}
void SITLScheduler::sitl_end_atomic() {
if (_nested_atomic_ctr == 0)
hal.uartA->println_P(PSTR("NESTED ATOMIC ERROR"));
else
_nested_atomic_ctr--;
}
void SITLScheduler::reboot(bool hold_in_bootloader)
{
hal.uartA->println_P(PSTR("REBOOT NOT IMPLEMENTED\r\n"));
}
void SITLScheduler::_run_timer_procs(bool called_from_isr)
{
if (_in_timer_proc) {
// the timer calls took longer than the period of the
// timer. This is bad, and may indicate a serious
// driver failure. We can't just call the drivers
// again, as we could run out of stack. So we only
// call the _failsafe call. It's job is to detect if
// the drivers or the main loop are indeed dead and to
// activate whatever failsafe it thinks may help if
// need be. We assume the failsafe code can't
// block. If it does then we will recurse and die when
// we run out of stack
if (_failsafe != NULL) {
_failsafe();
}
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] != NULL) {
_timer_proc[i]();
}
}
} else if (called_from_isr) {
_timer_event_missed = true;
}
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe();
}
_in_timer_proc = false;
}
void SITLScheduler::_run_io_procs(bool called_from_isr)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
if (!_timer_suspended) {
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] != NULL) {
_io_proc[i]();
}
}
} else if (called_from_isr) {
_timer_event_missed = true;
}
_in_io_proc = false;
}
void SITLScheduler::panic(const prog_char_t *errormsg) {
hal.console->println_P(errormsg);
for(;;);
}
/*
set simulation timestamp
*/
void SITLScheduler::stop_clock(uint64_t time_usec)
{
if (stopped_clock_usec != 0) {
/*
wait until the main thread is waiting for us. This ensures
that any processing is complete before we advance the clock
*/
pthread_barrier_wait(&clock_barrier);
}
stopped_clock_usec = time_usec;
/*
wait again to ensure the main thread can't get behind the FDM
*/
pthread_barrier_wait(&clock_barrier);
_run_io_procs(false);
}
#endif