ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_MPU9250.cpp

815 lines
30 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-- Coded by Victor Mayoral Vilches --
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "AP_InertialSensor_MPU9250.h"
#include <AP_HAL_Linux/GPIO.h>
#include <assert.h>
extern const AP_HAL::HAL& hal;
// MPU9250 accelerometer scaling for 16g range
#define MPU9250_ACCEL_SCALE_1G (GRAVITY_MSS / 2048.0f)
#define MPUREG_XG_OFFS_TC 0x00
#define MPUREG_YG_OFFS_TC 0x01
#define MPUREG_ZG_OFFS_TC 0x02
#define MPUREG_X_FINE_GAIN 0x03
#define MPUREG_Y_FINE_GAIN 0x04
#define MPUREG_Z_FINE_GAIN 0x05
// MPU9250 registers
#define MPUREG_XA_OFFS_H 0x77 // X axis accelerometer offset (high byte)
#define MPUREG_XA_OFFS_L 0x78 // X axis accelerometer offset (low byte)
#define MPUREG_YA_OFFS_H 0x7A // Y axis accelerometer offset (high byte)
#define MPUREG_YA_OFFS_L 0x0B // Y axis accelerometer offset (low byte)
#define MPUREG_ZA_OFFS_H 0x0D // Z axis accelerometer offset (high byte)
#define MPUREG_ZA_OFFS_L 0x0E // Z axis accelerometer offset (low byte)
// MPU6000 & MPU9250 registers
// not sure if present in MPU9250
// #define MPUREG_PRODUCT_ID 0x0C // Product ID Register
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte)
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte)
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte)
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte)
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte)
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte)
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz
# define MPUREG_SMPLRT_1000HZ 0x00
# define MPUREG_SMPLRT_500HZ 0x01
# define MPUREG_SMPLRT_250HZ 0x03
# define MPUREG_SMPLRT_200HZ 0x04
# define MPUREG_SMPLRT_100HZ 0x09
# define MPUREG_SMPLRT_50HZ 0x13
#define MPUREG_CONFIG 0x1A
#define MPUREG_GYRO_CONFIG 0x1B
// bit definitions for MPUREG_GYRO_CONFIG
# define BITS_GYRO_FS_250DPS 0x00
# define BITS_GYRO_FS_500DPS 0x08
# define BITS_GYRO_FS_1000DPS 0x10
# define BITS_GYRO_FS_2000DPS 0x18
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
# define BITS_GYRO_ZGYRO_SELFTEST 0x20
# define BITS_GYRO_YGYRO_SELFTEST 0x40
# define BITS_GYRO_XGYRO_SELFTEST 0x80
#define MPUREG_ACCEL_CONFIG 0x1C
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
#define MPUREG_FIFO_EN 0x23
#define MPUREG_INT_PIN_CFG 0x37
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
# define BIT_BYPASS_EN 0x02 // connect auxiliary I2C bus to the main I2C bus
#define MPUREG_INT_ENABLE 0x38
// bit definitions for MPUREG_INT_ENABLE
# define BIT_RAW_RDY_EN 0x01
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
# define BIT_UNKNOWN_INT_EN 0x04
# define BIT_I2C_MST_INT_EN 0x08
# define BIT_FIFO_OFLOW_EN 0x10
# define BIT_ZMOT_EN 0x20
# define BIT_MOT_EN 0x40
# define BIT_FF_EN 0x80
#define MPUREG_INT_STATUS 0x3A
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
# define BIT_RAW_RDY_INT 0x01
# define BIT_DMP_INT 0x02
# define BIT_UNKNOWN_INT 0x04
# define BIT_I2C_MST_INT 0x08
# define BIT_FIFO_OFLOW_INT 0x10
# define BIT_ZMOT_INT 0x20
# define BIT_MOT_INT 0x40
# define BIT_FF_INT 0x80
#define MPUREG_ACCEL_XOUT_H 0x3B
#define MPUREG_ACCEL_XOUT_L 0x3C
#define MPUREG_ACCEL_YOUT_H 0x3D
#define MPUREG_ACCEL_YOUT_L 0x3E
#define MPUREG_ACCEL_ZOUT_H 0x3F
#define MPUREG_ACCEL_ZOUT_L 0x40
#define MPUREG_TEMP_OUT_H 0x41
#define MPUREG_TEMP_OUT_L 0x42
#define MPUREG_GYRO_XOUT_H 0x43
#define MPUREG_GYRO_XOUT_L 0x44
#define MPUREG_GYRO_YOUT_H 0x45
#define MPUREG_GYRO_YOUT_L 0x46
#define MPUREG_GYRO_ZOUT_H 0x47
#define MPUREG_GYRO_ZOUT_L 0x48
#define MPUREG_USER_CTRL 0x6A
// bit definitions for MPUREG_USER_CTRL
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp)
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set)
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations
#define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers)
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory)
#define MPUREG_MEM_R_W 0x6F // DMP related register
#define MPUREG_DMP_CFG_1 0x70 // DMP related register
#define MPUREG_DMP_CFG_2 0x71 // DMP related register
#define MPUREG_FIFO_COUNTH 0x72
#define MPUREG_FIFO_COUNTL 0x73
#define MPUREG_FIFO_R_W 0x74
#define MPUREG_WHOAMI 0x75
#define MPUREG_WHOAMI_MPU9250 0x71
#define MPUREG_WHOAMI_MPU9255 0x73
/* bit definitions for MPUREG_MST_CTRL */
#define MPUREG_I2C_MST_CTRL 0x24
# define I2C_MST_P_NSR 0x10
# define I2C_SLV0_EN 0x80
# define I2C_MST_CLOCK_400KHZ 0x0D
# define I2C_MST_CLOCK_258KHZ 0x08
#define MPUREG_I2C_SLV4_CTRL 0x34
#define MPUREG_I2C_MST_DELAY_CTRL 0x67
# define I2C_SLV0_DLY_EN 0x01
# define I2C_SLV1_DLY_EN 0x02
# define I2C_SLV2_DLY_EN 0x04
# define I2C_SLV3_DLY_EN 0x08
#define READ_FLAG 0x80
#define MPUREG_I2C_SLV0_ADDR 0x25
#define MPUREG_EXT_SENS_DATA_00 0x49
#define MPUREG_I2C_SLV0_DO 0x63
// Configuration bits MPU 3000, MPU 6000 and MPU9250
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
#define BITS_DLPF_CFG_188HZ 0x01
#define BITS_DLPF_CFG_98HZ 0x02
#define BITS_DLPF_CFG_42HZ 0x03
#define BITS_DLPF_CFG_20HZ 0x04
#define BITS_DLPF_CFG_10HZ 0x05
#define BITS_DLPF_CFG_5HZ 0x06
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
#define BITS_DLPF_CFG_MASK 0x07
#define DEFAULT_SMPLRT_DIV MPUREG_SMPLRT_1000HZ
#define DEFAULT_SAMPLE_RATE (1000 / (DEFAULT_SMPLRT_DIV + 1))
/*
* PS-MPU-9250A-00.pdf, page 8, lists LSB sensitivity of
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
*/
#define GYRO_SCALE (0.0174532f / 16.4f)
/*
* PS-MPU-9250A-00.pdf, page 9, lists LSB sensitivity of
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
*
* See note below about accel scaling of engineering sample MPUXk
* variants however
*/
/*
* 2 bytes for each in this order: ACC_X, ACC_Y, ACC_Z, TEMP, GYRO_X, GYRO_Y
* and GYRO_Z
*/
#define MPU9250_SAMPLE_SIZE 14
/* SPI bus driver implementation */
AP_MPU9250_BusDriver_SPI::AP_MPU9250_BusDriver_SPI(AP_HAL::SPIDeviceDriver *spi)
{
_spi = spi;
}
void AP_MPU9250_BusDriver_SPI::init()
{
// disable I2C as recommended by the datasheet
write8(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
}
void AP_MPU9250_BusDriver_SPI::read8(uint8_t reg, uint8_t *val)
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
*val = rx[1];
}
void AP_MPU9250_BusDriver_SPI::read_block(uint8_t reg, uint8_t *val, uint8_t count)
{
assert(count < 32);
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[32] = { addr, };
uint8_t rx[32];
_spi->transaction(tx, rx, count + 1);
memcpy(val, rx + 1, count);
}
void AP_MPU9250_BusDriver_SPI::write8(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[1] = val;
_spi->transaction(tx, rx, 2);
}
void AP_MPU9250_BusDriver_SPI::set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed)
{
_spi->set_bus_speed(speed);
}
bool AP_MPU9250_BusDriver_SPI::read_data_transaction(uint8_t *samples, uint8_t &n_samples)
{
/* one register address followed by seven 2-byte registers */
struct PACKED {
uint8_t cmd;
uint8_t int_status;
uint8_t v[MPU9250_SAMPLE_SIZE];
} rx, tx = { cmd : MPUREG_INT_STATUS | 0x80, };
_spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx));
if (!(rx.int_status & BIT_RAW_RDY_INT)) {
n_samples = 0;
#if MPU9250_DEBUG
hal.console->printf("MPU9250: No sample available.\n");
#endif
return false;
}
n_samples = 1;
memcpy(&samples[0], &rx.v[0], MPU9250_SAMPLE_SIZE);
return true;
}
AP_HAL::Semaphore* AP_MPU9250_BusDriver_SPI::get_semaphore()
{
return _spi->get_semaphore();
}
bool AP_MPU9250_BusDriver_SPI::has_auxiliary_bus()
{
return true;
}
/* I2C bus driver implementation */
AP_MPU9250_BusDriver_I2C::AP_MPU9250_BusDriver_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr)
: _addr(addr)
, _i2c(i2c)
{
}
void AP_MPU9250_BusDriver_I2C::init()
{
uint8_t value;
read8(MPUREG_INT_PIN_CFG, &value);
// enable I2C bypass, connecting auxiliary I2C bus to the main one
value |= BIT_BYPASS_EN;
write8(MPUREG_INT_PIN_CFG, value);
}
void AP_MPU9250_BusDriver_I2C::read8(uint8_t reg, uint8_t *val)
{
_i2c->readRegister(_addr, reg, val);
}
void AP_MPU9250_BusDriver_I2C::read_block(uint8_t reg, uint8_t *val, uint8_t count)
{
_i2c->readRegisters(_addr, reg, count, val);
}
void AP_MPU9250_BusDriver_I2C::write8(uint8_t reg, uint8_t val)
{
_i2c->writeRegister(_addr, reg, val);
}
bool AP_MPU9250_BusDriver_I2C::read_data_transaction(uint8_t *samples,
uint8_t &n_samples)
{
uint8_t ret = 0;
struct PACKED {
uint8_t int_status;
uint8_t v[MPU9250_SAMPLE_SIZE];
} buffer;
ret = _i2c->readRegisters(_addr, MPUREG_INT_STATUS, sizeof(buffer), (uint8_t *)&buffer);
if (ret != 0) {
hal.console->printf("MPU9250: error in I2C read\n");
n_samples = 0;
return false;
}
if (!(buffer.int_status & BIT_RAW_RDY_INT)) {
#if MPU9250_DEBUG
hal.console->printf("MPU9250: No sample available.\n");
#endif
n_samples = 0;
return false;
}
memcpy(samples, buffer.v, MPU9250_SAMPLE_SIZE);
n_samples = 1;
return true;
}
AP_HAL::Semaphore* AP_MPU9250_BusDriver_I2C::get_semaphore()
{
return _i2c->get_semaphore();
}
bool AP_MPU9250_BusDriver_I2C::has_auxiliary_bus()
{
return false;
}
AP_InertialSensor_MPU9250::AP_InertialSensor_MPU9250(AP_InertialSensor &imu, AP_MPU9250_BusDriver *bus) :
AP_InertialSensor_Backend(imu),
_bus(bus),
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
_default_rotation(ROTATION_ROLL_180_YAW_270)
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO
/* no rotation needed */
_default_rotation(ROTATION_NONE)
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2
_default_rotation(ROTATION_YAW_270)
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BBBMINI
_default_rotation(ROTATION_NONE)
#else /* rotate for bbone default (and other boards) */
_default_rotation(ROTATION_ROLL_180_YAW_90)
#endif
{
}
/*
detect the sensor
*/
AP_InertialSensor_Backend *AP_InertialSensor_MPU9250::detect(AP_InertialSensor &_imu, AP_HAL::SPIDeviceDriver *spi)
{
AP_MPU9250_BusDriver *bus = new AP_MPU9250_BusDriver_SPI(spi);
if (!bus)
return NULL;
return _detect(_imu, bus, HAL_INS_MPU9250);
}
AP_InertialSensor_Backend *AP_InertialSensor_MPU9250::detect_i2c(AP_InertialSensor &_imu,
AP_HAL::I2CDriver *i2c,
uint8_t addr)
{
AP_MPU9250_BusDriver *bus = new AP_MPU9250_BusDriver_I2C(i2c, addr);
if (!bus)
return nullptr;
return _detect(_imu, bus, HAL_INS_MPU9250);
}
/* Common detection method - it takes ownership of the bus, freeing it if it's
* not possible to return an AP_InertialSensor_Backend */
AP_InertialSensor_Backend *AP_InertialSensor_MPU9250::_detect(AP_InertialSensor &_imu,
AP_MPU9250_BusDriver *bus,
int16_t id)
{
AP_InertialSensor_MPU9250 *sensor = new AP_InertialSensor_MPU9250(_imu, bus);
if (sensor == NULL) {
delete bus;
return NULL;
}
if (!sensor->_init_sensor()) {
delete sensor;
delete bus;
return NULL;
}
sensor->_id = id;
return sensor;
}
/*
initialise the sensor
*/
bool AP_InertialSensor_MPU9250::_init_sensor()
{
_bus_sem = _bus->get_semaphore();
if (!_hardware_init())
return false;
_gyro_instance = _imu.register_gyro(DEFAULT_SAMPLE_RATE);
_accel_instance = _imu.register_accel(DEFAULT_SAMPLE_RATE);
_product_id = AP_PRODUCT_ID_MPU9250;
// start the timer process to read samples
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU9250::_poll_data, void));
#if MPU9250_DEBUG
_dump_registers();
#endif
return true;
}
/*
update the accel and gyro vectors
*/
bool AP_InertialSensor_MPU9250::update( void )
{
update_gyro(_gyro_instance);
update_accel(_accel_instance);
return true;
}
/*================ HARDWARE FUNCTIONS ==================== */
/**
* Timer process to poll for new data from the MPU9250.
*/
void AP_InertialSensor_MPU9250::_poll_data(void)
{
if (!_bus_sem->take_nonblocking()) {
/*
the semaphore being busy is an expected condition when the
mainline code is calling wait_for_sample() which will
grab the semaphore. We return now and rely on the mainline
code grabbing the latest sample.
*/
return;
}
_read_data_transaction();
_bus_sem->give();
}
/*
read from the data registers and update filtered data
*/
void AP_InertialSensor_MPU9250::_read_data_transaction()
{
uint8_t n_samples;
uint8_t rx[MPU9250_SAMPLE_SIZE];
Vector3f accel, gyro;
if (!_bus->read_data_transaction(rx, n_samples)) {
return;
}
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
accel = Vector3f(int16_val(rx, 1),
int16_val(rx, 0),
-int16_val(rx, 2));
accel *= MPU9250_ACCEL_SCALE_1G;
accel.rotate(_default_rotation);
_rotate_and_correct_accel(_accel_instance, accel);
_notify_new_accel_raw_sample(_accel_instance, accel);
gyro = Vector3f(int16_val(rx, 5),
int16_val(rx, 4),
-int16_val(rx, 6));
gyro *= GYRO_SCALE;
gyro.rotate(_default_rotation);
_rotate_and_correct_gyro(_gyro_instance, gyro);
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
}
/*
read an 8 bit register
*/
uint8_t AP_InertialSensor_MPU9250::_register_read(uint8_t reg)
{
uint8_t val;
_bus->read8(reg, &val);
return val;
}
/*
write an 8 bit register
*/
void AP_InertialSensor_MPU9250::_register_write(uint8_t reg, uint8_t val)
{
_bus->write8(reg, val);
}
/*
initialise the sensor configuration registers
*/
bool AP_InertialSensor_MPU9250::_hardware_init(void)
{
// we need to suspend timers to prevent other SPI drivers grabbing
// the bus while we do the long initialisation
hal.scheduler->suspend_timer_procs();
if (!_bus_sem->take(100)) {
hal.console->printf("MPU9250: Unable to get semaphore");
return false;
}
// initially run the bus at low speed
_bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
uint8_t value = _register_read(MPUREG_WHOAMI);
if (value != MPUREG_WHOAMI_MPU9250 && value != MPUREG_WHOAMI_MPU9255) {
hal.console->printf("MPU9250: unexpected WHOAMI 0x%x\n", (unsigned)value);
goto fail_whoami;
}
// Chip reset
uint8_t tries;
for (tries = 0; tries < 5; tries++) {
uint8_t user_ctrl = _register_read(MPUREG_USER_CTRL);
/* First disable the master I2C to avoid hanging the slaves on the
* auxiliary I2C bus */
if (user_ctrl & BIT_USER_CTRL_I2C_MST_EN) {
_register_write(MPUREG_USER_CTRL, user_ctrl & ~BIT_USER_CTRL_I2C_MST_EN);
hal.scheduler->delay(10);
}
// reset device
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
hal.scheduler->delay(100);
// bus-dependent initialization
_bus->init();
// Wake up device and select GyroZ clock. Note that the
// MPU9250 starts up in sleep mode, and it can take some time
// for it to come out of sleep
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
hal.scheduler->delay(5);
// check it has woken up
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
break;
}
hal.scheduler->delay(10);
uint8_t status = _register_read(MPUREG_INT_STATUS);
if ((status & BIT_RAW_RDY_INT) != 0) {
break;
}
#if MPU9250_DEBUG
_dump_registers();
#endif
}
if (tries == 5) {
hal.console->println("Failed to boot MPU9250 5 times");
goto fail_tries;
}
_register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode
// used no filter of 256Hz on the sensor, then filter using
// the 2-pole software filter
_register_write(MPUREG_CONFIG, BITS_DLPF_CFG_256HZ_NOLPF2);
// set sample rate to 1kHz, and use the 2 pole filter to give the
// desired rate
_register_write(MPUREG_SMPLRT_DIV, DEFAULT_SMPLRT_DIV);
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000º/s
// RM-MPU-9250A-00.pdf, pg. 15, select accel full scale 16g
_register_write(MPUREG_ACCEL_CONFIG,3<<3);
// configure interrupt to fire when new data arrives
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
// clear interrupt on any read, and hold the data ready pin high
// until we clear the interrupt
value = _register_read(MPUREG_INT_PIN_CFG);
value |= BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN;
_register_write(MPUREG_INT_PIN_CFG, value);
// now that we have initialized, we set the SPI bus speed to high
_bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
_bus_sem->give();
hal.scheduler->resume_timer_procs();
return true;
fail_tries:
fail_whoami:
_bus_sem->give();
hal.scheduler->resume_timer_procs();
_bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
return false;
}
AuxiliaryBus *AP_InertialSensor_MPU9250::get_auxiliary_bus()
{
if (_auxiliar_bus)
return _auxiliar_bus;
if (_bus->has_auxiliary_bus())
_auxiliar_bus = new AP_MPU9250_AuxiliaryBus(*this);
return _auxiliar_bus;
}
#if MPU9250_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_MPU9250::_dump_registers(AP_MPU9250_BusDriver *bus)
{
hal.console->println("MPU9250 registers");
for (uint8_t reg=0; reg<=126; reg++) {
uint8_t v = _register_read(bus, reg);
hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v);
if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) {
hal.console->println();
}
}
hal.console->println();
}
#endif
AP_MPU9250_AuxiliaryBus::AP_MPU9250_AuxiliaryBus(AP_InertialSensor_MPU9250 &backend)
: AuxiliaryBus(backend, 4)
{
}
AP_HAL::Semaphore *AP_MPU9250_AuxiliaryBus::get_semaphore()
{
return AP_InertialSensor_MPU9250::from(_ins_backend)._bus_sem;
}
AuxiliaryBusSlave *AP_MPU9250_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance)
{
/* Enable slaves on MPU9250 if this is the first time */
if (_ext_sens_data == 0)
_configure_slaves();
return new AP_MPU9250_AuxiliaryBusSlave(*this, addr, instance);
}
void AP_MPU9250_AuxiliaryBus::_configure_slaves()
{
AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_ins_backend);
/* Enable the I2C master to slaves on the auxiliary I2C bus*/
uint8_t user_ctrl = backend._register_read(MPUREG_USER_CTRL);
backend._register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN);
/* stop condition between reads; clock at 400kHz */
backend._register_write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ | I2C_MST_P_NSR);
/* Hard-code divider for internal sample rate, 1 kHz, resulting in a
* sample rate of 100Hz */
backend._register_write(MPUREG_I2C_SLV4_CTRL, 9);
/* All slaves are subject to the sample rate */
backend._register_write(MPUREG_I2C_MST_DELAY_CTRL, I2C_SLV0_DLY_EN
| I2C_SLV1_DLY_EN | I2C_SLV2_DLY_EN | I2C_SLV3_DLY_EN);
}
int AP_MPU9250_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave,
uint8_t reg, uint8_t size)
{
if (_ext_sens_data + size > MAX_EXT_SENS_DATA)
return -1;
AP_MPU9250_AuxiliaryBusSlave *mpu_slave =
static_cast<AP_MPU9250_AuxiliaryBusSlave*>(slave);
mpu_slave->_set_passthrough(reg, size);
mpu_slave->_ext_sens_data = _ext_sens_data;
_ext_sens_data += size;
return 0;
}
AP_MPU9250_AuxiliaryBusSlave::AP_MPU9250_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr,
uint8_t instance)
: AuxiliaryBusSlave(bus, addr, instance)
, _mpu9250_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3)
, _mpu9250_reg(_mpu9250_addr + 1)
, _mpu9250_ctrl(_mpu9250_addr + 2)
, _mpu9250_do(MPUREG_I2C_SLV0_DO + _instance)
{
}
int AP_MPU9250_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size,
uint8_t *out)
{
AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend());
uint8_t addr;
/* Ensure the slave read/write is disabled before changing the registers */
backend._register_write(_mpu9250_ctrl, 0);
if (out) {
backend._register_write(_mpu9250_do, *out);
addr = _addr;
} else {
addr = _addr | READ_FLAG;
}
backend._register_write(_mpu9250_addr, addr);
backend._register_write(_mpu9250_reg, reg);
backend._register_write(_mpu9250_ctrl, I2C_SLV0_EN | size);
return 0;
}
int AP_MPU9250_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf,
uint8_t size)
{
assert(buf);
if (_registered) {
hal.console->println("Error: can't passthrough when slave is already configured");
return -1;
}
int r = _set_passthrough(reg, size);
if (r < 0)
return r;
/* wait the value to be read from the slave and read it back */
hal.scheduler->delay(10);
AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend());
backend._bus->read_block(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size);
/* disable new reads */
backend._register_write(_mpu9250_ctrl, 0);
return size;
}
int AP_MPU9250_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val)
{
if (_registered) {
hal.console->println("Error: can't passthrough when slave is already configured");
return -1;
}
int r = _set_passthrough(reg, 1, &val);
if (r < 0)
return r;
/* wait the value to be written to the slave */
hal.scheduler->delay(10);
AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend());
/* disable new writes */
backend._register_write(_mpu9250_ctrl, 0);
return 0;
}
int AP_MPU9250_AuxiliaryBusSlave::read(uint8_t *buf)
{
if (!_registered) {
hal.console->println("Error: can't read before configuring slave");
return -1;
}
AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend());
backend._bus->read_block(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size);
return 0;
}
#endif // CONFIG_HAL_BOARD