ardupilot/libraries/AP_HAL_Linux/GPIO_RPI.cpp

201 lines
5.4 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
#include "GPIO.h"
#include "Util_RPI.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <poll.h>
#include <sys/mman.h>
#include <sys/stat.h>
using namespace Linux;
static const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
LinuxGPIO_RPI::LinuxGPIO_RPI()
{}
void LinuxGPIO_RPI::init()
{
int rpi_version = LinuxUtilRPI::from(hal.util)->get_rpi_version();
uint32_t gpio_address = rpi_version == 1 ? GPIO_BASE(BCM2708_PERI_BASE) : GPIO_BASE(BCM2709_PERI_BASE);
uint32_t pwm_address = rpi_version == 1 ? PWM_BASE(BCM2708_PERI_BASE) : PWM_BASE(BCM2709_PERI_BASE);
uint32_t clk_address = rpi_version == 1 ? CLOCK_BASE(BCM2708_PERI_BASE) : CLOCK_BASE(BCM2709_PERI_BASE);
// open /dev/mem
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
hal.scheduler->panic("Can't open /dev/mem");
}
// mmap GPIO
gpio_map = mmap(
NULL, // Any adddress in our space will do
BLOCK_SIZE, // Map length
PROT_READ|PROT_WRITE, // Enable reading & writting to mapped memory
MAP_SHARED, // Shared with other processes
mem_fd, // File to map
gpio_address // Offset to GPIO peripheral
);
pwm_map = mmap(
NULL, // Any adddress in our space will do
BLOCK_SIZE, // Map length
PROT_READ|PROT_WRITE, // Enable reading & writting to mapped memory
MAP_SHARED, // Shared with other processes
mem_fd, // File to map
pwm_address // Offset to GPIO peripheral
);
clk_map = mmap(
NULL, // Any adddress in our space will do
BLOCK_SIZE, // Map length
PROT_READ|PROT_WRITE, // Enable reading & writting to mapped memory
MAP_SHARED, // Shared with other processes
mem_fd, // File to map
clk_address // Offset to GPIO peripheral
);
close(mem_fd); // No need to keep mem_fd open after mmap
if (gpio_map == MAP_FAILED || pwm_map == MAP_FAILED || clk_map == MAP_FAILED) {
hal.scheduler->panic("Can't open /dev/mem");
}
gpio = (volatile uint32_t *)gpio_map; // Always use volatile pointer!
pwm = (volatile uint32_t *)pwm_map;
clk = (volatile uint32_t *)clk_map;
}
void LinuxGPIO_RPI::pinMode(uint8_t pin, uint8_t output)
{
if (output == HAL_GPIO_INPUT) {
GPIO_MODE_IN(pin);
} else {
GPIO_MODE_IN(pin);
GPIO_MODE_OUT(pin);
}
}
void LinuxGPIO_RPI::pinMode(uint8_t pin, uint8_t output, uint8_t alt)
{
if (output == HAL_GPIO_INPUT) {
GPIO_MODE_IN(pin);
} else if (output == HAL_GPIO_ALT) {
GPIO_MODE_IN(pin);
GPIO_MODE_ALT(pin, alt);
} else {
GPIO_MODE_IN(pin);
GPIO_MODE_OUT(pin);
}
}
int8_t LinuxGPIO_RPI::analogPinToDigitalPin(uint8_t pin)
{
return -1;
}
uint8_t LinuxGPIO_RPI::read(uint8_t pin)
{
uint32_t value = GPIO_GET(pin);
return value ? 1: 0;
}
void LinuxGPIO_RPI::write(uint8_t pin, uint8_t value)
{
if (value == LOW) {
GPIO_SET_LOW = 1 << pin;
} else {
GPIO_SET_HIGH = 1 << pin;
}
}
void LinuxGPIO_RPI::toggle(uint8_t pin)
{
write(pin, !read(pin));
}
void LinuxGPIO_RPI::setPWMPeriod(uint8_t pin, uint32_t time_us)
{
setPWM0Period(time_us);
}
void LinuxGPIO_RPI::setPWMDuty(uint8_t pin, uint8_t percent)
{
setPWM0Duty(percent);
}
void LinuxGPIO_RPI::setPWM0Period(uint32_t time_us)
{
// stop clock and waiting for busy flag doesn't work, so kill clock
*(clk + PWMCLK_CNTL) = 0x5A000000 | (1 << 5);
usleep(10);
// set frequency
// DIVI is the integer part of the divisor
// the fractional part (DIVF) drops clock cycles to get the output frequency, bad for servo motors
// 320 bits for one cycle of 20 milliseconds = 62.5 us per bit = 16 kHz
int idiv = (int) (19200000.0f / (320000000.0f / time_us));
if (idiv < 1 || idiv > 0x1000) {
return;
}
*(clk + PWMCLK_DIV) = 0x5A000000 | (idiv<<12);
// source=osc and enable clock
*(clk + PWMCLK_CNTL) = 0x5A000011;
// disable PWM
*(pwm + PWM_CTL) = 0;
// needs some time until the PWM module gets disabled, without the delay the PWM module crashs
usleep(10);
// filled with 0 for 20 milliseconds = 320 bits
*(pwm + PWM_RNG1) = 320;
// init with 0%
setPWM0Duty(0);
// start PWM1 in serializer mode
*(pwm + PWM_CTL) = 3;
}
void LinuxGPIO_RPI::setPWM0Duty(uint8_t percent)
{
int bitCount;
unsigned int bits = 0;
bitCount = 320 * percent / 100;
if (bitCount > 320) bitCount = 320;
if (bitCount < 0) bitCount = 0;
bits = 0;
while (bitCount) {
bits <<= 1;
bits |= 1;
bitCount--;
}
*(pwm + PWM_DAT1) = bits;
}
/* Alternative interface: */
AP_HAL::DigitalSource* LinuxGPIO_RPI::channel(uint16_t n) {
return new LinuxDigitalSource(n);
}
/* Interrupt interface: */
bool LinuxGPIO_RPI::attach_interrupt(uint8_t interrupt_num, AP_HAL::Proc p, uint8_t mode)
{
return true;
}
bool LinuxGPIO_RPI::usb_connected(void)
{
return false;
}
#endif // CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT