mirror of https://github.com/ArduPilot/ardupilot
184 lines
5.3 KiB
C++
184 lines
5.3 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "RPM_Pin.h"
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
#include <board_config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
AP_RPM_Pin::IrqState AP_RPM_Pin::irq_state[RPM_MAX_INSTANCES];
|
|
|
|
/*
|
|
open the sensor in constructor
|
|
*/
|
|
AP_RPM_Pin::AP_RPM_Pin(AP_RPM &_ap_rpm, uint8_t instance, AP_RPM::RPM_State &_state) :
|
|
AP_RPM_Backend(_ap_rpm, instance, _state)
|
|
{
|
|
}
|
|
|
|
/*
|
|
handle interrupt on an instance
|
|
*/
|
|
void AP_RPM_Pin::irq_handler(uint8_t instance)
|
|
{
|
|
uint32_t now = AP_HAL::micros();
|
|
uint32_t dt = now - irq_state[instance].last_pulse_us;
|
|
irq_state[instance].last_pulse_us = now;
|
|
// we don't accept pulses less than 100us. Using an irq for such
|
|
// high RPM is too inaccurate, and it is probably just bounce of
|
|
// the signal which we should ignore
|
|
if (dt > 100 && dt < 1000*1000) {
|
|
irq_state[instance].dt_sum += dt;
|
|
irq_state[instance].dt_count++;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
/*
|
|
interrupt handler for instance 0
|
|
*/
|
|
int AP_RPM_Pin::irq_handler0(int irq, void *context)
|
|
{
|
|
irq_handler(0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
interrupt handler for instance 1
|
|
*/
|
|
int AP_RPM_Pin::irq_handler1(int irq, void *context)
|
|
{
|
|
irq_handler(1);
|
|
return 0;
|
|
}
|
|
#else // other HALs
|
|
/*
|
|
interrupt handler for instance 0
|
|
*/
|
|
void AP_RPM_Pin::irq_handler0(void)
|
|
{
|
|
irq_handler(0);
|
|
}
|
|
|
|
/*
|
|
interrupt handler for instance 1
|
|
*/
|
|
void AP_RPM_Pin::irq_handler1(void)
|
|
{
|
|
irq_handler(1);
|
|
}
|
|
#endif
|
|
|
|
void AP_RPM_Pin::update(void)
|
|
{
|
|
if (last_pin != get_pin()) {
|
|
last_pin = get_pin();
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
uint32_t gpio = 0;
|
|
|
|
#ifdef GPIO_GPIO0_INPUT
|
|
switch (last_pin) {
|
|
case 50:
|
|
gpio = GPIO_GPIO0_INPUT;
|
|
break;
|
|
case 51:
|
|
gpio = GPIO_GPIO1_INPUT;
|
|
break;
|
|
case 52:
|
|
gpio = GPIO_GPIO2_INPUT;
|
|
break;
|
|
case 53:
|
|
gpio = GPIO_GPIO3_INPUT;
|
|
break;
|
|
case 54:
|
|
gpio = GPIO_GPIO4_INPUT;
|
|
break;
|
|
case 55:
|
|
gpio = GPIO_GPIO5_INPUT;
|
|
break;
|
|
}
|
|
#endif // GPIO_GPIO5_INPUT
|
|
|
|
// uninstall old handler if installed
|
|
if (last_gpio != 0) {
|
|
stm32_gpiosetevent(last_gpio, false, false, false, nullptr);
|
|
}
|
|
irq_state[state.instance].dt_count = 0;
|
|
irq_state[state.instance].dt_sum = 0;
|
|
|
|
last_gpio = gpio;
|
|
|
|
if (gpio == 0) {
|
|
return;
|
|
}
|
|
|
|
// install interrupt handler on rising edge of pin. This works
|
|
// for either polarity of pulse, as all we want is the period
|
|
stm32_gpiosetevent(gpio, true, false, false,
|
|
state.instance==0?irq_handler0:irq_handler1);
|
|
#else // other HALs
|
|
hal.gpio->pinMode(last_pin, HAL_GPIO_INPUT);
|
|
hal.gpio->attach_interrupt(last_pin, state.instance==0?irq_handler0:irq_handler1,
|
|
HAL_GPIO_INTERRUPT_RISING);
|
|
#endif
|
|
}
|
|
|
|
if (irq_state[state.instance].dt_count > 0) {
|
|
float dt_avg;
|
|
|
|
// disable interrupts to prevent race with irq_handler
|
|
void *irqstate = hal.scheduler->disable_interrupts_save();
|
|
dt_avg = irq_state[state.instance].dt_sum / irq_state[state.instance].dt_count;
|
|
irq_state[state.instance].dt_count = 0;
|
|
irq_state[state.instance].dt_sum = 0;
|
|
hal.scheduler->restore_interrupts(irqstate);
|
|
|
|
const float scaling = ap_rpm._scaling[state.instance];
|
|
float maximum = ap_rpm._maximum[state.instance];
|
|
float minimum = ap_rpm._minimum[state.instance];
|
|
float quality = 0;
|
|
float rpm = scaling * (1.0e6 / dt_avg) * 60;
|
|
float filter_value = signal_quality_filter.get();
|
|
|
|
state.rate_rpm = signal_quality_filter.apply(rpm);
|
|
|
|
if ((maximum <= 0 || rpm <= maximum) && (rpm >= minimum)) {
|
|
if (is_zero(filter_value)){
|
|
quality = 0;
|
|
} else {
|
|
quality = 1 - constrain_float((fabsf(rpm-filter_value))/filter_value, 0.0, 1.0);
|
|
quality = powf(quality, 2.0);
|
|
}
|
|
state.last_reading_ms = AP_HAL::millis();
|
|
} else {
|
|
quality = 0;
|
|
}
|
|
state.signal_quality = (0.1 * quality) + (0.9 * state.signal_quality);
|
|
}
|
|
|
|
// assume we get readings at at least 1Hz, otherwise reset quality to zero
|
|
if (AP_HAL::millis() - state.last_reading_ms > 1000) {
|
|
state.signal_quality = 0;
|
|
state.rate_rpm = 0;
|
|
}
|
|
}
|