ardupilot/Rover/mode.cpp

570 lines
21 KiB
C++

#include "Rover.h"
Mode::Mode() :
ahrs(rover.ahrs),
g(rover.g),
g2(rover.g2),
channel_steer(rover.channel_steer),
channel_throttle(rover.channel_throttle),
channel_lateral(rover.channel_lateral),
channel_roll(rover.channel_roll),
channel_pitch(rover.channel_pitch),
channel_walking_height(rover.channel_walking_height),
attitude_control(g2.attitude_control)
{ }
void Mode::exit()
{
// call sub-classes exit
_exit();
}
bool Mode::enter()
{
const bool ignore_checks = !hal.util->get_soft_armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
if (!ignore_checks) {
// get EKF filter status
nav_filter_status filt_status;
rover.ahrs.get_filter_status(filt_status);
// check position estimate. requires origin and at least one horizontal position flag to be true
const bool position_ok = rover.ekf_position_ok() && !rover.failsafe.ekf;
if (requires_position() && !position_ok) {
return false;
}
// check velocity estimate (if we have position estimate, we must have velocity estimate)
if (requires_velocity() && !position_ok && !filt_status.flags.horiz_vel) {
return false;
}
}
bool ret = _enter();
// initialisation common to all modes
if (ret) {
// init reversed flag
init_reversed_flag();
// clear sailboat tacking flags
g2.sailboat.clear_tack();
}
return ret;
}
// decode pilot steering and throttle inputs and return in steer_out and throttle_out arguments
// steering_out is in the range -4500 ~ +4500 with positive numbers meaning rotate clockwise
// throttle_out is in the range -100 ~ +100
void Mode::get_pilot_input(float &steering_out, float &throttle_out) const
{
// no RC input means no throttle and centered steering
if (rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) {
steering_out = 0;
throttle_out = 0;
return;
}
// apply RC skid steer mixing
switch ((enum pilot_steer_type_t)g.pilot_steer_type.get())
{
case PILOT_STEER_TYPE_DEFAULT:
case PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING:
default: {
// by default regular and skid-steering vehicles reverse their rotation direction when backing up
throttle_out = rover.channel_throttle->get_control_in();
const float steering_dir = is_negative(throttle_out) ? -1 : 1;
steering_out = steering_dir * rover.channel_steer->get_control_in();
break;
}
case PILOT_STEER_TYPE_TWO_PADDLES: {
// convert the two radio_in values from skid steering values
// left paddle from steering input channel, right paddle from throttle input channel
// steering = left-paddle - right-paddle
// throttle = average(left-paddle, right-paddle)
const float left_paddle = rover.channel_steer->norm_input_dz();
const float right_paddle = rover.channel_throttle->norm_input_dz();
throttle_out = 0.5f * (left_paddle + right_paddle) * 100.0f;
steering_out = (left_paddle - right_paddle) * 0.5f * 4500.0f;
break;
}
case PILOT_STEER_TYPE_DIR_UNCHANGED_WHEN_REVERSING: {
throttle_out = rover.channel_throttle->get_control_in();
steering_out = rover.channel_steer->get_control_in();
break;
}
}
}
// decode pilot steering and throttle inputs and return in steer_out and throttle_out arguments
// steering_out is in the range -4500 ~ +4500 with positive numbers meaning rotate clockwise
// throttle_out is in the range -100 ~ +100
void Mode::get_pilot_desired_steering_and_throttle(float &steering_out, float &throttle_out) const
{
// do basic conversion
get_pilot_input(steering_out, throttle_out);
// for skid steering vehicles, if pilot commands would lead to saturation
// we proportionally reduce steering and throttle
if (g2.motors.have_skid_steering()) {
const float steer_normalised = constrain_float(steering_out / 4500.0f, -1.0f, 1.0f);
const float throttle_normalised = constrain_float(throttle_out * 0.01f, -1.0f, 1.0f);
const float saturation_value = fabsf(steer_normalised) + fabsf(throttle_normalised);
if (saturation_value > 1.0f) {
steering_out /= saturation_value;
throttle_out /= saturation_value;
}
}
// check for special case of input and output throttle being in opposite directions
float throttle_out_limited = g2.motors.get_slew_limited_throttle(throttle_out, rover.G_Dt);
if ((is_negative(throttle_out) != is_negative(throttle_out_limited)) &&
((g.pilot_steer_type == PILOT_STEER_TYPE_DEFAULT) ||
(g.pilot_steer_type == PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING))) {
steering_out *= -1;
}
throttle_out = throttle_out_limited;
}
// decode pilot steering and return steering_out and speed_out (in m/s)
void Mode::get_pilot_desired_steering_and_speed(float &steering_out, float &speed_out) const
{
float desired_throttle;
get_pilot_input(steering_out, desired_throttle);
speed_out = desired_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);
// check for special case of input and output throttle being in opposite directions
float speed_out_limited = g2.attitude_control.get_desired_speed_accel_limited(speed_out, rover.G_Dt);
if ((is_negative(speed_out) != is_negative(speed_out_limited)) &&
((g.pilot_steer_type == PILOT_STEER_TYPE_DEFAULT) ||
(g.pilot_steer_type == PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING))) {
steering_out *= -1;
}
speed_out = speed_out_limited;
}
// decode pilot lateral movement input and return in lateral_out argument
void Mode::get_pilot_desired_lateral(float &lateral_out) const
{
// no RC input means no lateral input
if ((rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) || (rover.channel_lateral == nullptr)) {
lateral_out = 0;
return;
}
// get pilot lateral input
lateral_out = rover.channel_lateral->get_control_in();
}
// decode pilot's input and return heading_out (in cd) and speed_out (in m/s)
void Mode::get_pilot_desired_heading_and_speed(float &heading_out, float &speed_out) const
{
// get steering and throttle in the -1 to +1 range
float desired_steering = constrain_float(rover.channel_steer->norm_input_dz(), -1.0f, 1.0f);
float desired_throttle = constrain_float(rover.channel_throttle->norm_input_dz(), -1.0f, 1.0f);
// handle two paddle input
if ((enum pilot_steer_type_t)g.pilot_steer_type.get() == PILOT_STEER_TYPE_TWO_PADDLES) {
const float left_paddle = desired_steering;
const float right_paddle = desired_throttle;
desired_steering = (left_paddle - right_paddle) * 0.5f;
desired_throttle = (left_paddle + right_paddle) * 0.5f;
}
// calculate angle of input stick vector
heading_out = wrap_360_cd(atan2f(desired_steering, desired_throttle) * DEGX100);
// calculate throttle using magnitude of input stick vector
const float throttle = MIN(safe_sqrt(sq(desired_throttle) + sq(desired_steering)), 1.0f);
speed_out = throttle * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);
}
// decode pilot roll and pitch inputs and return in roll_out and pitch_out arguments
// outputs are in the range -1 to +1
void Mode::get_pilot_desired_roll_and_pitch(float &roll_out, float &pitch_out) const
{
if (channel_roll != nullptr) {
roll_out = channel_roll->norm_input();
} else {
roll_out = 0.0f;
}
if (channel_pitch != nullptr) {
pitch_out = channel_pitch->norm_input();
} else {
pitch_out = 0.0f;
}
}
// decode pilot walking_height inputs and return in walking_height_out arguments
// outputs are in the range -1 to +1
void Mode::get_pilot_desired_walking_height(float &walking_height_out) const
{
if (channel_walking_height != nullptr) {
walking_height_out = channel_walking_height->norm_input();
} else {
walking_height_out = 0.0f;
}
}
// return heading (in degrees) to target destination (aka waypoint)
float Mode::wp_bearing() const
{
if (!is_autopilot_mode()) {
return 0.0f;
}
return g2.wp_nav.wp_bearing_cd() * 0.01f;
}
// return short-term target heading in degrees (i.e. target heading back to line between waypoints)
float Mode::nav_bearing() const
{
if (!is_autopilot_mode()) {
return 0.0f;
}
return g2.wp_nav.nav_bearing_cd() * 0.01f;
}
// return cross track error (i.e. vehicle's distance from the line between waypoints)
float Mode::crosstrack_error() const
{
if (!is_autopilot_mode()) {
return 0.0f;
}
return g2.wp_nav.crosstrack_error();
}
// return desired lateral acceleration
float Mode::get_desired_lat_accel() const
{
if (!is_autopilot_mode()) {
return 0.0f;
}
return g2.wp_nav.get_lat_accel();
}
// set desired location
bool Mode::set_desired_location(const Location &destination, Location next_destination )
{
if (!g2.wp_nav.set_desired_location(destination, next_destination)) {
return false;
}
// initialise distance
_distance_to_destination = g2.wp_nav.get_distance_to_destination();
_reached_destination = false;
return true;
}
// get default speed for this mode (held in WP_SPEED or RTL_SPEED)
float Mode::get_speed_default(bool rtl) const
{
if (rtl && is_positive(g2.rtl_speed)) {
return g2.rtl_speed;
}
return g2.wp_nav.get_default_speed();
}
// execute the mission in reverse (i.e. backing up)
void Mode::set_reversed(bool value)
{
g2.wp_nav.set_reversed(value);
}
// handle tacking request (from auxiliary switch) in sailboats
void Mode::handle_tack_request()
{
// autopilot modes handle tacking
if (is_autopilot_mode()) {
g2.sailboat.handle_tack_request_auto();
}
}
void Mode::calc_throttle(float target_speed, bool avoidance_enabled)
{
// get acceleration limited target speed
target_speed = attitude_control.get_desired_speed_accel_limited(target_speed, rover.G_Dt);
#if AP_AVOIDANCE_ENABLED
// apply object avoidance to desired speed using half vehicle's maximum deceleration
if (avoidance_enabled) {
g2.avoid.adjust_speed(0.0f, 0.5f * attitude_control.get_decel_max(), ahrs.get_yaw(), target_speed, rover.G_Dt);
if (g2.sailboat.tack_enabled() && g2.avoid.limits_active()) {
// we are a sailboat trying to avoid fence, try a tack
if (rover.control_mode != &rover.mode_acro) {
rover.control_mode->handle_tack_request();
}
}
}
#endif // AP_AVOIDANCE_ENABLED
// call throttle controller and convert output to -100 to +100 range
float throttle_out = 0.0f;
if (g2.sailboat.sail_enabled()) {
// sailboats use special throttle and mainsail controller
g2.sailboat.get_throttle_and_set_mainsail(target_speed, throttle_out);
} else {
// call speed or stop controller
if (is_zero(target_speed) && !rover.is_balancebot()) {
bool stopped;
throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt, stopped);
} else {
bool motor_lim_low = g2.motors.limit.throttle_lower || attitude_control.pitch_limited();
bool motor_lim_high = g2.motors.limit.throttle_upper || attitude_control.pitch_limited();
throttle_out = 100.0f * attitude_control.get_throttle_out_speed(target_speed, motor_lim_low, motor_lim_high, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt);
}
// if vehicle is balance bot, calculate actual throttle required for balancing
if (rover.is_balancebot()) {
rover.balancebot_pitch_control(throttle_out);
}
}
// send to motor
g2.motors.set_throttle(throttle_out);
}
// performs a controlled stop without turning
bool Mode::stop_vehicle()
{
// call throttle controller and convert output to -100 to +100 range
bool stopped = false;
float throttle_out;
// if vehicle is balance bot, calculate throttle required for balancing
if (rover.is_balancebot()) {
throttle_out = 100.0f * attitude_control.get_throttle_out_speed(0, g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt);
rover.balancebot_pitch_control(throttle_out);
} else {
throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt, stopped);
}
// relax sails if present
g2.sailboat.relax_sails();
// send to motor
g2.motors.set_throttle(throttle_out);
// do not turn while slowing down
float steering_out = 0.0;
if (!stopped) {
steering_out = attitude_control.get_steering_out_rate(0.0, g2.motors.limit.steer_left, g2.motors.limit.steer_right, rover.G_Dt);
}
g2.motors.set_steering(steering_out * 4500.0);
// return true once stopped
return stopped;
}
// estimate maximum vehicle speed (in m/s)
// cruise_speed is in m/s, cruise_throttle should be in the range -1 to +1
float Mode::calc_speed_max(float cruise_speed, float cruise_throttle) const
{
float speed_max;
// sanity checks
if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) {
speed_max = cruise_speed;
} else if (is_positive(g2.speed_max)) {
speed_max = g2.speed_max;
} else {
// project vehicle's maximum speed
speed_max = (1.0f / cruise_throttle) * cruise_speed;
}
// constrain to 30m/s (108km/h) and return
return constrain_float(speed_max, 0.0f, 30.0f);
}
// calculate pilot input to nudge speed up or down
// target_speed should be in meters/sec
// reversed should be true if the vehicle is intentionally backing up which allows the pilot to increase the backing up speed by pulling the throttle stick down
float Mode::calc_speed_nudge(float target_speed, bool reversed)
{
// sanity checks
if (g.throttle_cruise > 100 || g.throttle_cruise < 5) {
return target_speed;
}
// convert pilot throttle input to speed
float pilot_steering, pilot_throttle;
get_pilot_input(pilot_steering, pilot_throttle);
float pilot_speed = pilot_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);
// ignore pilot's input if in opposite direction to vehicle's desired direction of travel
// note that the target_speed may be negative while reversed is true (or vice-versa)
// while vehicle is transitioning between forward and backwards movement
if ((is_positive(pilot_speed) && reversed) ||
(is_negative(pilot_speed) && !reversed)) {
return target_speed;
}
// return the larger of the pilot speed and the original target speed
if (reversed) {
return MIN(target_speed, pilot_speed);
} else {
return MAX(target_speed, pilot_speed);
}
}
// high level call to navigate to waypoint
// uses wp_nav to calculate turn rate and speed to drive along the path from origin to destination
// this function updates _distance_to_destination
void Mode::navigate_to_waypoint()
{
// apply speed nudge from pilot
// calc_speed_nudge's "desired_speed" argument should be negative when vehicle is reversing
// AR_WPNav nudge_speed_max argu,ent should always be positive even when reversing
const float calc_nudge_input_speed = g2.wp_nav.get_speed_max() * (g2.wp_nav.get_reversed() ? -1.0 : 1.0);
const float nudge_speed_max = calc_speed_nudge(calc_nudge_input_speed, g2.wp_nav.get_reversed());
g2.wp_nav.set_nudge_speed_max(fabsf(nudge_speed_max));
// update navigation controller
g2.wp_nav.update(rover.G_Dt);
_distance_to_destination = g2.wp_nav.get_distance_to_destination();
#if AP_AVOIDANCE_ENABLED
// sailboats trigger tack if simple avoidance becomes active
if (g2.sailboat.tack_enabled() && g2.avoid.limits_active()) {
// we are a sailboat trying to avoid fence, try a tack
rover.control_mode->handle_tack_request();
}
#endif
// pass desired speed to throttle controller
// do not do simple avoidance because this is already handled in the position controller
calc_throttle(g2.wp_nav.get_speed(), false);
float desired_heading_cd = g2.wp_nav.oa_wp_bearing_cd();
if (g2.sailboat.use_indirect_route(desired_heading_cd)) {
// sailboats use heading controller when tacking upwind
desired_heading_cd = g2.sailboat.calc_heading(desired_heading_cd);
// use pivot turn rate for tacks
const float turn_rate = g2.sailboat.tacking() ? g2.wp_nav.get_pivot_rate() : 0.0f;
calc_steering_to_heading(desired_heading_cd, turn_rate);
} else {
// retrieve turn rate from waypoint controller
float desired_turn_rate_rads = g2.wp_nav.get_turn_rate_rads();
// if simple avoidance is active at very low speed do not attempt to turn
#if AP_AVOIDANCE_ENABLED
if (g2.avoid.limits_active() && (fabsf(attitude_control.get_desired_speed()) <= attitude_control.get_stop_speed())) {
desired_turn_rate_rads = 0.0f;
}
#endif
// call turn rate steering controller
calc_steering_from_turn_rate(desired_turn_rate_rads);
}
}
// calculate steering output given a turn rate
// desired turn rate in radians/sec. Positive to the right.
void Mode::calc_steering_from_turn_rate(float turn_rate)
{
// calculate and send final steering command to motor library
const float steering_out = attitude_control.get_steering_out_rate(turn_rate,
g2.motors.limit.steer_left,
g2.motors.limit.steer_right,
rover.G_Dt);
set_steering(steering_out * 4500.0f);
}
/*
calculate steering output given lateral_acceleration
*/
void Mode::calc_steering_from_lateral_acceleration(float lat_accel, bool reversed)
{
// constrain to max G force
lat_accel = constrain_float(lat_accel, -attitude_control.get_turn_lat_accel_max(), attitude_control.get_turn_lat_accel_max());
// send final steering command to motor library
const float steering_out = attitude_control.get_steering_out_lat_accel(lat_accel,
g2.motors.limit.steer_left,
g2.motors.limit.steer_right,
rover.G_Dt);
set_steering(steering_out * 4500.0f);
}
// calculate steering output to drive towards desired heading
// rate_max is a maximum turn rate in deg/s. set to zero to use default turn rate limits
void Mode::calc_steering_to_heading(float desired_heading_cd, float rate_max_degs)
{
// call heading controller
const float steering_out = attitude_control.get_steering_out_heading(radians(desired_heading_cd*0.01f),
radians(rate_max_degs),
g2.motors.limit.steer_left,
g2.motors.limit.steer_right,
rover.G_Dt);
set_steering(steering_out * 4500.0f);
}
void Mode::set_steering(float steering_value)
{
if (allows_stick_mixing() && g2.stick_mixing > 0) {
steering_value = channel_steer->stick_mixing((int16_t)steering_value);
}
g2.motors.set_steering(steering_value);
}
Mode *Rover::mode_from_mode_num(const enum Mode::Number num)
{
Mode *ret = nullptr;
switch (num) {
case Mode::Number::MANUAL:
ret = &mode_manual;
break;
case Mode::Number::ACRO:
ret = &mode_acro;
break;
case Mode::Number::STEERING:
ret = &mode_steering;
break;
case Mode::Number::HOLD:
ret = &mode_hold;
break;
case Mode::Number::LOITER:
ret = &mode_loiter;
break;
#if MODE_FOLLOW_ENABLED == ENABLED
case Mode::Number::FOLLOW:
ret = &mode_follow;
break;
#endif
case Mode::Number::SIMPLE:
ret = &mode_simple;
break;
case Mode::Number::CIRCLE:
ret = &g2.mode_circle;
break;
case Mode::Number::AUTO:
ret = &mode_auto;
break;
case Mode::Number::RTL:
ret = &mode_rtl;
break;
case Mode::Number::SMART_RTL:
ret = &mode_smartrtl;
break;
case Mode::Number::GUIDED:
ret = &mode_guided;
break;
case Mode::Number::INITIALISING:
ret = &mode_initializing;
break;
#if MODE_DOCK_ENABLED == ENABLED
case Mode::Number::DOCK:
ret = (Mode *)g2.mode_dock_ptr;
break;
#endif
default:
break;
}
return ret;
}