ardupilot/libraries/AC_AttitudeControl/AC_PosControl.h

437 lines
23 KiB
C++

#pragma once
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <AC_PID/AC_P.h> // P library
#include <AC_PID/AC_PID.h> // PID library
#include <AC_PID/AC_PI_2D.h> // PI library (2-axis)
#include <AC_PID/AC_PID_2D.h> // PID library (2-axis)
#include <AP_InertialNav/AP_InertialNav.h> // Inertial Navigation library
#include "AC_AttitudeControl.h" // Attitude control library
#include <AP_Motors/AP_Motors.h> // motors library
#include <AP_Vehicle/AP_Vehicle.h> // common vehicle parameters
// position controller default definitions
#define POSCONTROL_ACCELERATION_MIN 50.0f // minimum horizontal acceleration in cm/s/s - used for sanity checking acceleration in leash length calculation
#define POSCONTROL_ACCEL_XY 100.0f // default horizontal acceleration in cm/s/s. This is overwritten by waypoint and loiter controllers
#define POSCONTROL_ACCEL_XY_MAX 980.0f // max horizontal acceleration in cm/s/s that the position velocity controller will ask from the lower accel controller
#define POSCONTROL_STOPPING_DIST_UP_MAX 300.0f // max stopping distance (in cm) vertically while climbing
#define POSCONTROL_STOPPING_DIST_DOWN_MAX 200.0f // max stopping distance (in cm) vertically while descending
#define POSCONTROL_SPEED 500.0f // default horizontal speed in cm/s
#define POSCONTROL_SPEED_DOWN -150.0f // default descent rate in cm/s
#define POSCONTROL_SPEED_UP 250.0f // default climb rate in cm/s
#define POSCONTROL_ACCEL_Z 250.0f // default vertical acceleration in cm/s/s.
#define POSCONTROL_LEASH_LENGTH_MIN 100.0f // minimum leash lengths in cm
#define POSCONTROL_DT_50HZ 0.02f // time difference in seconds for 50hz update rate
#define POSCONTROL_DT_400HZ 0.0025f // time difference in seconds for 400hz update rate
#define POSCONTROL_ACTIVE_TIMEOUT_US 200000 // position controller is considered active if it has been called within the past 0.2 seconds
#define POSCONTROL_VEL_ERROR_CUTOFF_FREQ 4.0f // low-pass filter on velocity error (unit: hz)
#define POSCONTROL_THROTTLE_CUTOFF_FREQ 2.0f // low-pass filter on accel error (unit: hz)
#define POSCONTROL_ACCEL_FILTER_HZ 2.0f // low-pass filter on acceleration (unit: hz)
#define POSCONTROL_JERK_RATIO 1.0f // Defines the time it takes to reach the requested acceleration
#define POSCONTROL_OVERSPEED_GAIN_Z 2.0f // gain controlling rate at which z-axis speed is brought back within SPEED_UP and SPEED_DOWN range
class AC_PosControl
{
public:
/// Constructor
AC_PosControl(const AP_AHRS_View& ahrs, const AP_InertialNav& inav,
const AP_Motors& motors, AC_AttitudeControl& attitude_control);
///
/// initialisation functions
///
/// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025)
/// updates z axis accel controller's D term filter
void set_dt(float delta_sec);
float get_dt() const { return _dt; }
///
/// z position controller
///
/// set_max_speed_z - sets maximum climb and descent rates
/// speed_down can be positive or negative but will always be interpreted as a descent speed
/// leash length will be recalculated
void set_max_speed_z(float speed_down, float speed_up);
/// get_max_speed_up - accessor for current maximum up speed in cm/s
float get_max_speed_up() const { return _speed_up_cms; }
/// get_max_speed_down - accessors for current maximum down speed in cm/s. Will be a negative number
float get_max_speed_down() const { return _speed_down_cms; }
/// get_vel_target_z - returns current vertical speed in cm/s
float get_vel_target_z() const { return _vel_target.z; }
/// set_max_accel_z - set the maximum vertical acceleration in cm/s/s
/// leash length will be recalculated
void set_max_accel_z(float accel_cmss);
/// get_max_accel_z - returns current maximum vertical acceleration in cm/s/s
float get_max_accel_z() const { return _accel_z_cms; }
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration
/// called by update_z_controller if z-axis speed or accelerations are changed
void calc_leash_length_z();
/// set_alt_target - set altitude target in cm above home
void set_alt_target(float alt_cm) { _pos_target.z = alt_cm; }
/// set_alt_target_with_slew - adjusts target towards a final altitude target
/// should be called continuously (with dt set to be the expected time between calls)
/// actual position target will be moved no faster than the speed_down and speed_up
/// target will also be stopped if the motors hit their limits or leash length is exceeded
void set_alt_target_with_slew(float alt_cm, float dt);
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
/// should be called continuously (with dt set to be the expected time between calls)
/// actual position target will be moved no faster than the speed_down and speed_up
/// target will also be stopped if the motors hit their limits or leash length is exceeded
/// set force_descend to true during landing to allow target to move low enough to slow the motors
virtual void set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend);
/// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward
/// should be called continuously (with dt set to be the expected time between calls)
/// actual position target will be moved no faster than the speed_down and speed_up
/// target will also be stopped if the motors hit their limits or leash length is exceeded
/// set force_descend to true during landing to allow target to move low enough to slow the motors
virtual void set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend);
/// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s
/// should be called continuously (with dt set to be the expected time between calls)
/// almost no checks are performed on the input
void add_takeoff_climb_rate(float climb_rate_cms, float dt);
/// set_alt_target_to_current_alt - set altitude target to current altitude
void set_alt_target_to_current_alt() { _pos_target.z = _inav.get_altitude(); }
/// shift altitude target (positive means move altitude up)
void shift_alt_target(float z_cm);
/// relax_alt_hold_controllers - set all desired and targets to measured
void relax_alt_hold_controllers(float throttle_setting);
/// get_alt_target - get desired altitude (in cm above home) from loiter or wp controller which should be fed into throttle controller
float get_alt_target() const { return _pos_target.z; }
/// get_alt_error - returns altitude error in cm
float get_alt_error() const;
/// get_vel_z_error_ratio - returns the proportion of error relative to the maximum request
float get_vel_z_control_ratio() const { return constrain_float(_vel_z_control_ratio, 0.0f, 1.0f); }
// returns horizontal error in cm
float get_horizontal_error() const;
/// set_target_to_stopping_point_z - sets altitude target to reasonable stopping altitude in cm above home
void set_target_to_stopping_point_z();
/// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration
void get_stopping_point_z(Vector3f& stopping_point) const;
/// init_takeoff - initialises target altitude if we are taking off
void init_takeoff();
// is_active - returns true if the z-axis position controller has been run very recently
bool is_active_z() const;
/// update_z_controller - fly to altitude in cm above home
void update_z_controller();
// get_leash_down_z, get_leash_up_z - returns vertical leash lengths in cm
float get_leash_down_z() const { return _leash_down_z; }
float get_leash_up_z() const { return _leash_up_z; }
///
/// xy position controller
///
/// get_lean_angle_max_cd - returns the maximum lean angle the autopilot may request
float get_lean_angle_max_cd() const;
/// init_xy_controller - initialise the xy controller
/// sets target roll angle, pitch angle and I terms based on vehicle current lean angles
/// should be called once whenever significant changes to the position target are made
/// this does not update the xy target
void init_xy_controller();
/// standby_xyz_reset - resets I terms and removes position error
/// This function will let Loiter and Alt Hold continue to operate
/// in the event that the flight controller is in control of the
/// aircraft when in standby.
void standby_xyz_reset();
/// set_max_accel_xy - set the maximum horizontal acceleration in cm/s/s
/// leash length will be recalculated
void set_max_accel_xy(float accel_cmss);
float get_max_accel_xy() const { return _accel_cms; }
/// set_max_speed_xy - set the maximum horizontal speed maximum in cm/s
/// leash length will be recalculated
void set_max_speed_xy(float speed_cms);
float get_max_speed_xy() const { return _speed_cms; }
/// set_limit_accel_xy - mark that accel has been limited
/// this prevents integrator buildup
void set_limit_accel_xy(void) { _limit.accel_xy = true; }
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration
/// should be called whenever the speed, acceleration or position kP is modified
void calc_leash_length_xy();
/// set the horizontal leash length
void set_leash_length_xy(float leash) { _leash = leash; _flags.recalc_leash_xy = false; }
/// get_pos_target - get target as position vector (from home in cm)
const Vector3f& get_pos_target() const { return _pos_target; }
/// set_pos_target in cm from home
void set_pos_target(const Vector3f& position);
/// set_xy_target in cm from home
void set_xy_target(float x, float y);
/// shift position target target in x, y axis
void shift_pos_xy_target(float x_cm, float y_cm);
/// get_desired_velocity - returns xy desired velocity (i.e. feed forward) in cm/s in lat and lon direction
const Vector3f& get_desired_velocity() { return _vel_desired; }
/// set_desired_velocity_z - sets desired velocity in cm/s in z axis
void set_desired_velocity_z(float vel_z_cms) {_vel_desired.z = vel_z_cms;}
// clear desired velocity feed-forward in z axis
void clear_desired_velocity_ff_z() { _flags.use_desvel_ff_z = false; }
// set desired acceleration in cm/s in xy axis
void set_desired_accel_xy(float accel_lat_cms, float accel_lon_cms) { _accel_desired.x = accel_lat_cms; _accel_desired.y = accel_lon_cms; }
/// set_desired_velocity_xy - sets desired velocity in cm/s in lat and lon directions
/// when update_xy_controller is next called the position target is moved based on the desired velocity and
/// the desired velocities are fed forward into the rate_to_accel step
void set_desired_velocity_xy(float vel_lat_cms, float vel_lon_cms) {_vel_desired.x = vel_lat_cms; _vel_desired.y = vel_lon_cms; }
/// set_desired_velocity - sets desired velocity in cm/s in all 3 axis
/// when update_vel_controller_xyz is next called the position target is moved based on the desired velocity
void set_desired_velocity(const Vector3f &des_vel) { _vel_desired = des_vel; }
// overrides the velocity process variable for one timestep
void override_vehicle_velocity_xy(const Vector2f& vel_xy) { _vehicle_horiz_vel = vel_xy; _flags.vehicle_horiz_vel_override = true; }
/// freeze_ff_z - used to stop the feed forward being calculated during a known discontinuity
void freeze_ff_z() { _flags.freeze_ff_z = true; }
// is_active_xy - returns true if the xy position controller has been run very recently
bool is_active_xy() const;
/// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher
/// when use_desired_velocity is true the desired velocity (i.e. feed forward) is incorporated at the pos_to_rate step
void update_xy_controller();
/// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home
void set_target_to_stopping_point_xy();
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
/// distance_max allows limiting distance to stopping point
/// results placed in stopping_position vector
/// set_accel_xy() should be called before this method to set vehicle acceleration
/// set_leash_length() should have been called before this method
void get_stopping_point_xy(Vector3f &stopping_point) const;
/// get_distance_to_target - get horizontal distance to position target in cm (used for reporting)
float get_distance_to_target() const;
/// get_bearing_to_target - get bearing to target position in centi-degrees
int32_t get_bearing_to_target() const;
/// xyz velocity controller
/// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller
void init_vel_controller_xyz();
/// update_velocity_controller_xy - run the XY velocity controller - should be called at 100hz or higher
/// velocity targets should we set using set_desired_velocity_xy() method
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller
/// throttle targets will be sent directly to the motors
void update_vel_controller_xy();
/// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher
/// velocity targets should we set using set_desired_velocity_xyz() method
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller
/// throttle targets will be sent directly to the motors
void update_vel_controller_xyz();
/// get desired roll, pitch which should be fed into stabilize controllers
float get_roll() const { return _roll_target; }
float get_pitch() const { return _pitch_target; }
// get_leash_xy - returns horizontal leash length in cm
float get_leash_xy() const { return _leash; }
/// get pid controllers
AC_P& get_pos_z_p() { return _p_pos_z; }
AC_P& get_vel_z_p() { return _p_vel_z; }
AC_PID& get_accel_z_pid() { return _pid_accel_z; }
AC_P& get_pos_xy_p() { return _p_pos_xy; }
AC_PID_2D& get_vel_xy_pid() { return _pid_vel_xy; }
/// accessors for reporting
const Vector3f& get_vel_target() const { return _vel_target; }
const Vector3f& get_accel_target() const { return _accel_target; }
// lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
void accel_to_lean_angles(float accel_x_cmss, float accel_y_cmss, float& roll_target, float& pitch_target) const;
// lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
void lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const;
// time_since_last_xy_update - returns time in seconds since the horizontal position controller was last run
float time_since_last_xy_update() const;
void write_log();
// provide feedback on whether arming would be a good idea right now:
bool pre_arm_checks(const char *param_prefix,
char *failure_msg,
const uint8_t failure_msg_len);
// enable or disable high vibration compensation
void set_vibe_comp(bool on_off) { _vibe_comp_enabled = on_off; }
static const struct AP_Param::GroupInfo var_info[];
protected:
// general purpose flags
struct poscontrol_flags {
uint16_t recalc_leash_z : 1; // 1 if we should recalculate the z axis leash length
uint16_t recalc_leash_xy : 1; // 1 if we should recalculate the xy axis leash length
uint16_t reset_desired_vel_to_pos : 1; // 1 if we should reset the rate_to_accel_xy step
uint16_t reset_accel_to_lean_xy : 1; // 1 if we should reset the accel to lean angle step
uint16_t reset_rate_to_accel_z : 1; // 1 if we should reset the rate_to_accel_z step
uint16_t freeze_ff_z : 1; // 1 used to freeze velocity to accel feed forward for one iteration
uint16_t use_desvel_ff_z : 1; // 1 to use z-axis desired velocity as feed forward into velocity step
uint16_t vehicle_horiz_vel_override : 1; // 1 if we should use _vehicle_horiz_vel as our velocity process variable for one timestep
} _flags;
// limit flags structure
struct poscontrol_limit_flags {
uint8_t pos_up : 1; // 1 if we have hit the vertical position leash limit while going up
uint8_t pos_down : 1; // 1 if we have hit the vertical position leash limit while going down
uint8_t vel_up : 1; // 1 if we have hit the vertical velocity limit going up
uint8_t vel_down : 1; // 1 if we have hit the vertical velocity limit going down
uint8_t accel_xy : 1; // 1 if we have hit the horizontal accel limit
} _limit;
///
/// z controller private methods
///
// run position control for Z axis
// target altitude should be set with one of these functions
// set_alt_target
// set_target_to_stopping_point_z
// init_takeoff
void run_z_controller();
///
/// xy controller private methods
///
/// move velocity target using desired acceleration
void desired_accel_to_vel(float nav_dt);
/// desired_vel_to_pos - move position target using desired velocities
void desired_vel_to_pos(float nav_dt);
/// run horizontal position controller correcting position and velocity
/// converts position (_pos_target) to target velocity (_vel_target)
/// desired velocity (_vel_desired) is combined into final target velocity
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void run_xy_controller(float dt);
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
float calc_leash_length(float speed_cms, float accel_cms, float kP) const;
/// limit vector to a given length, returns true if vector was limited
static bool limit_vector_length(float& vector_x, float& vector_y, float max_length);
/// Proportional controller with piecewise sqrt sections to constrain second derivative
static Vector3f sqrt_controller(const Vector3f& error, float p, float second_ord_lim);
/// initialise and check for ekf position resets
void init_ekf_xy_reset();
void check_for_ekf_xy_reset();
void init_ekf_z_reset();
void check_for_ekf_z_reset();
// references to inertial nav and ahrs libraries
const AP_AHRS_View & _ahrs;
const AP_InertialNav& _inav;
const AP_Motors& _motors;
AC_AttitudeControl& _attitude_control;
// parameters
AP_Float _accel_xy_filt_hz; // XY acceleration filter cutoff frequency
AP_Float _lean_angle_max; // Maximum autopilot commanded angle (in degrees). Set to zero for Angle Max
AC_P _p_pos_z;
AC_P _p_vel_z;
AC_PID _pid_accel_z;
AC_P _p_pos_xy;
AC_PID_2D _pid_vel_xy;
// internal variables
float _dt; // time difference (in seconds) between calls from the main program
uint64_t _last_update_xy_us; // system time (in microseconds) since last update_xy_controller call
uint64_t _last_update_z_us; // system time (in microseconds) of last update_z_controller call
float _speed_down_cms; // max descent rate in cm/s
float _speed_up_cms; // max climb rate in cm/s
float _speed_cms; // max horizontal speed in cm/s
float _accel_z_cms; // max vertical acceleration in cm/s/s
float _accel_last_z_cms; // max vertical acceleration in cm/s/s
float _accel_cms; // max horizontal acceleration in cm/s/s
float _leash; // horizontal leash length in cm. target will never be further than this distance from the vehicle
float _leash_down_z; // vertical leash down in cm. target will never be further than this distance below the vehicle
float _leash_up_z; // vertical leash up in cm. target will never be further than this distance above the vehicle
float _vel_z_control_ratio = 2.0f; // confidence that we have control in the vertical axis
// output from controller
float _roll_target; // desired roll angle in centi-degrees calculated by position controller
float _pitch_target; // desired roll pitch in centi-degrees calculated by position controller
// position controller internal variables
Vector3f _pos_target; // target location in cm from home
Vector3f _pos_error; // error between desired and actual position in cm
Vector3f _vel_desired; // desired velocity in cm/s
Vector3f _vel_target; // velocity target in cm/s calculated by pos_to_rate step
Vector3f _vel_error; // error between desired and actual acceleration in cm/s
Vector3f _vel_last; // previous iterations velocity in cm/s
Vector3f _accel_desired; // desired acceleration in cm/s/s (feed forward)
Vector3f _accel_target; // acceleration target in cm/s/s
Vector3f _accel_error; // acceleration error in cm/s/s
Vector2f _vehicle_horiz_vel; // velocity to use if _flags.vehicle_horiz_vel_override is set
LowPassFilterFloat _vel_error_filter; // low-pass-filter on z-axis velocity error
LowPassFilterVector2f _accel_target_filter; // acceleration target filter
// ekf reset handling
uint32_t _ekf_xy_reset_ms; // system time of last recorded ekf xy position reset
uint32_t _ekf_z_reset_ms; // system time of last recorded ekf altitude reset
// high vibration handling
bool _vibe_comp_enabled; // true when high vibration compensation is on
};