ardupilot/ArduPlane/quadplane.cpp

4204 lines
157 KiB
C++

#include "Plane.h"
#if HAL_QUADPLANE_ENABLED
#include "AC_AttitudeControl/AC_AttitudeControl_TS.h"
const AP_Param::GroupInfo QuadPlane::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable QuadPlane
// @Description: This enables QuadPlane functionality, assuming multicopter motors start on output 5. If this is set to 2 then when starting AUTO mode it will initially be in VTOL AUTO mode.
// @Values: 0:Disable,1:Enable,2:Enable VTOL AUTO
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO_FLAGS("ENABLE", 1, QuadPlane, enable, 0, AP_PARAM_FLAG_ENABLE),
// @Group: M_
// @Path: ../libraries/AP_Motors/AP_MotorsMulticopter.cpp
AP_SUBGROUPVARPTR(motors, "M_", 2, QuadPlane, plane.quadplane.motors_var_info),
// 3 ~ 8 were used by quadplane attitude control PIDs
// @Param: ANGLE_MAX
// @DisplayName: Angle Max
// @Description: Maximum lean angle in all VTOL flight modes
// @Units: cdeg
// @Increment: 10
// @Range: 1000 8000
// @User: Advanced
AP_GROUPINFO("ANGLE_MAX", 10, QuadPlane, aparm.angle_max, 3000),
// @Param: TRANSITION_MS
// @DisplayName: Transition time
// @Description: Transition time in milliseconds after minimum airspeed is reached
// @Units: ms
// @Range: 1 30000
// @User: Advanced
AP_GROUPINFO("TRANSITION_MS", 11, QuadPlane, transition_time_ms, 5000),
// 12 ~ 16 were used by position, velocity and acceleration PIDs
// @Group: P
// @Path: ../libraries/AC_AttitudeControl/AC_PosControl.cpp
AP_SUBGROUPPTR(pos_control, "P", 17, QuadPlane, AC_PosControl),
// @Param: VELZ_MAX
// @DisplayName: Pilot maximum vertical speed up
// @Description: The maximum ascending vertical velocity the pilot may request in cm/s
// @Units: cm/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("VELZ_MAX", 18, QuadPlane, pilot_velocity_z_max_up, 250),
// @Param: VELZ_MAX_DN
// @DisplayName: Pilot maximum vertical speed down
// @Description: The maximum vertical velocity the pilot may request in cm/s going down. If 0, uses Q_VELZ_MAX value.
// @Units: cm/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("VELZ_MAX_DN", 60, QuadPlane, pilot_velocity_z_max_dn, 0),
// @Param: ACCEL_Z
// @DisplayName: Pilot vertical acceleration
// @Description: The vertical acceleration used when pilot is controlling the altitude
// @Units: cm/s/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL_Z", 19, QuadPlane, pilot_accel_z, 250),
// @Group: WP_
// @Path: ../libraries/AC_WPNav/AC_WPNav.cpp
AP_SUBGROUPPTR(wp_nav, "WP_", 20, QuadPlane, AC_WPNav),
// @Param: RC_SPEED
// @DisplayName: RC output speed in Hz
// @Description: This is the PWM refresh rate in Hz for QuadPlane quad motors
// @Units: Hz
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RC_SPEED", 21, QuadPlane, rc_speed, 490),
// @Param: THR_MIN_PWM
// @DisplayName: Minimum PWM output
// @Description: This is the minimum PWM output for the quad motors
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Standard
// 22: THR_MIN_PWM
// @Param: THR_MAX_PWM
// @DisplayName: Maximum PWM output
// @Description: This is the maximum PWM output for the quad motors
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Standard
// 23: THR_MAX_PWM
// @Param: ASSIST_SPEED
// @DisplayName: Quadplane assistance speed
// @Description: This is the speed below which the quad motors will provide stability and lift assistance in fixed wing modes. Zero means no assistance except during transition. Note that if this is set to zero then other Q_ASSIST features are also disabled. A higher value will lead to more false positives which can waste battery. A lower value will result in less false positive, but will result in assistance taking longer to trigger. If unsure then set to 3 m/s below the minimum airspeed you will fly at. If you don't have an airspeed sensor then use 5 m/s below the minimum airspeed you fly at. If you want to disable the arming check Q_ASSIST_SPEED then set to -1.
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("ASSIST_SPEED", 24, QuadPlane, assist_speed, 0),
// @Param: YAW_RATE_MAX
// @DisplayName: Maximum yaw rate
// @Description: This is the maximum yaw rate for pilot input on rudder stick in degrees/second
// @Units: deg/s
// @Range: 50 500
// @Increment: 1
// @User: Standard
// YAW_RATE_MAX index 25
// @Param: LAND_SPEED
// @DisplayName: Land speed
// @Description: The descent speed for the final stage of landing in cm/s
// @Units: cm/s
// @Range: 30 200
// @Increment: 10
// @User: Standard
AP_GROUPINFO("LAND_SPEED", 26, QuadPlane, land_speed_cms, 50),
// @Param: LAND_FINAL_ALT
// @DisplayName: Land final altitude
// @Description: The altitude at which we should switch to Q_LAND_SPEED descent rate
// @Units: m
// @Range: 0.5 50
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("LAND_FINAL_ALT", 27, QuadPlane, land_final_alt, 6),
// 28 was used by THR_MID
// @Param: TRAN_PIT_MAX
// @DisplayName: Transition max pitch
// @Description: Maximum pitch during transition to auto fixed wing flight
// @User: Standard
// @Range: 0 30
// @Units: deg
// @Increment: 1
AP_GROUPINFO("TRAN_PIT_MAX", 29, QuadPlane, transition_pitch_max, 3),
// frame class was moved from 30 when consolidating AP_Motors classes
#define FRAME_CLASS_OLD_IDX 30
// @Param: FRAME_CLASS
// @DisplayName: Frame Class
// @Description: Controls major frame class for multicopter component
// @Values: 0:Undefined, 1:Quad, 2:Hexa, 3:Octa, 4:OctaQuad, 5:Y6, 7:Tri, 10: Single/Dual, 12:DodecaHexa, 14:Deca, 15:Scripting Matrix, 17:Dynamic Scripting Matrix
// @User: Standard
AP_GROUPINFO("FRAME_CLASS", 46, QuadPlane, frame_class, 1),
// @Param: FRAME_TYPE
// @DisplayName: Frame Type (+, X or V)
// @Description: Controls motor mixing for multicopter component
// @Values: 0:Plus, 1:X, 2:V, 3:H, 4:V-Tail, 5:A-Tail, 10:Y6B, 11:Y6F, 12:BetaFlightX, 13:DJIX, 14:ClockwiseX, 15:I, 16:MOTOR_FRAME_TYPE_NYT_PLUS, 17:MOTOR_FRAME_TYPE_NYT_X, 18: BetaFlightXReversed
// @User: Standard
AP_GROUPINFO("FRAME_TYPE", 31, QuadPlane, frame_type, 1),
// @Param: VFWD_GAIN
// @DisplayName: Forward velocity hold gain
// @Description: Controls use of forward motor in vtol modes. If this is zero then the forward motor will not be used for position control in VTOL modes. A value of 0.05 is a good place to start if you want to use the forward motor for position control. No forward motor will be used in QSTABILIZE or QHOVER modes. Use QLOITER for position hold with the forward motor.
// @Range: 0 0.5
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("VFWD_GAIN", 32, QuadPlane, vel_forward.gain, 0),
// 33 was used by WVANE_GAIN
// 34 was used by WVANE_MINROLL
// @Param: RTL_ALT
// @DisplayName: QRTL return altitude
// @Description: The altitude which QRTL mode heads to initially
// @Units: m
// @Range: 1 200
// @Increment: 1
// @User: Standard
AP_GROUPINFO("RTL_ALT", 35, QuadPlane, qrtl_alt, 15),
// @Param: RTL_MODE
// @DisplayName: VTOL RTL mode
// @Description: If this is set to 1 then an RTL will change to QRTL when within RTL_RADIUS meters of the RTL destination, VTOL approach: vehicle will RTL at RTL alt and circle with a radius of Q_FW_LND_APR_RAD down to Q_RTL_ALT and then transition into the wind and QRTL, see 'AUTO VTOL Landing', QRTL Always: do a QRTL instead of RTL
// @Values: 0:Disabled,1:Enabled,2:VTOL approach,3:QRTL Always
// @User: Standard
AP_GROUPINFO("RTL_MODE", 36, QuadPlane, rtl_mode, 0),
// 37: TILT_MASK
// 38: TILT_RATE_UP
// 39: TILT_MAX
// @Param: GUIDED_MODE
// @DisplayName: Enable VTOL in GUIDED mode
// @Description: This enables use of VTOL in guided mode. When enabled the aircraft will switch to VTOL flight when the guided destination is reached and hover at the destination.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("GUIDED_MODE", 40, QuadPlane, guided_mode, 0),
// 41 was used by THR_MIN
// @Param: ESC_CAL
// @DisplayName: ESC Calibration
// @Description: This is used to calibrate the throttle range of the VTOL motors. Please read https://ardupilot.org/plane/docs/quadplane-esc-calibration.html before using. This parameter is automatically set back to 0 on every boot. This parameter only takes effect in QSTABILIZE mode. When set to 1 the output of all motors will come directly from the throttle stick when armed, and will be zero when disarmed. When set to 2 the output of all motors will be maximum when armed and zero when disarmed. Make sure you remove all properllers before using.
// @Values: 0:Disabled,1:ThrottleInput,2:FullInput
// @User: Standard
AP_GROUPINFO("ESC_CAL", 42, QuadPlane, esc_calibration, 0),
// @Param: VFWD_ALT
// @DisplayName: Forward velocity alt cutoff
// @Description: Controls altitude to disable forward velocity assist when below this relative altitude. This is useful to keep the forward velocity propeller from hitting the ground. Rangefinder height data is incorporated when available.
// @Units: m
// @Range: 0 10
// @Increment: 0.25
// @User: Standard
AP_GROUPINFO("VFWD_ALT", 43, QuadPlane, vel_forward_alt_cutoff, 0),
// @Param: LAND_ICE_CUT
// @DisplayName: Cut IC engine on landing
// @Description: This controls stopping an internal combustion engine in the final landing stage of a VTOL. This is important for aircraft where the forward thrust engine may experience prop-strike if left running during landing. This requires the engine controls are enabled using the ICE_* parameters.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("LAND_ICE_CUT", 44, QuadPlane, land_icengine_cut, 1),
// @Param: ASSIST_ANGLE
// @DisplayName: Quadplane assistance angle
// @Description: This is the angular error in attitude beyond which the quadplane VTOL motors will provide stability assistance. This will only be used if Q_ASSIST_SPEED is also non-zero. Assistance will be given if the attitude is outside the normal attitude limits by at least 5 degrees and the angular error in roll or pitch is greater than this angle for at least Q_ASSIST_DELAY seconds. Set to zero to disable angle assistance.
// @Units: deg
// @Range: 0 90
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ASSIST_ANGLE", 45, QuadPlane, assist_angle, 30),
// 47: TILT_TYPE
// 48: TAILSIT_ANGLE
// 61: TAILSIT_ANG_VT
// 49: TILT_RATE_DN
// 50: TAILSIT_INPUT
// 51: TAILSIT_MASK
// 52: TAILSIT_MASKCH
// 53: TAILSIT_VFGAIN
// 54: TAILSIT_VHGAIN
// 56: TAILSIT_VHPOW
// @Param: MAV_TYPE
// @DisplayName: MAVLink type identifier
// @Description: This controls the mavlink type given in HEARTBEAT messages. For some GCS types a particular setting will be needed for correct operation.
// @Values: 0:AUTO,1:FIXED_WING,2:QUADROTOR,3:COAXIAL,4:HELICOPTER,7:AIRSHIP,8:FREE_BALLOON,9:ROCKET,10:GROUND_ROVER,11:SURFACE_BOAT,12:SUBMARINE,16:FLAPPING_WING,17:KITE,19:VTOL_DUOROTOR,20:VTOL_QUADROTOR,21:VTOL_TILTROTOR
AP_GROUPINFO("MAV_TYPE", 57, QuadPlane, mav_type, 0),
// @Param: OPTIONS
// @DisplayName: quadplane options
// @Description: Level Transition:Keep wings within LEVEL_ROLL_LIMIT and only use forward motor(s) for climb during transition, Allow FW Takeoff: If bit is not set then NAV_TAKEOFF command on quadplanes will instead perform a NAV_VTOL takeoff, Allow FW Land:If bit is not set then NAV_LAND command on quadplanes will instead perform a NAV_VTOL_LAND, Vtol Takeoff Frame: command NAV_VTOL_TAKEOFF altitude is as set by the command's reference frame rather than a delta above current location, Use FW Approach:Use a fixed wing approach for VTOL landings, USE QRTL:instead of QLAND for rc failsafe when in VTOL modes, Use Governor:Use ICE Idle Governor in MANUAL for forward motor, Force Qassist: on always,Mtrs_Only_Qassist: in tailsitters only, uses VTOL motors and not flying surfaces for QASSIST, Airmode_On_Arm:Airmode enabled when arming by aux switch, Disarmed Yaw Tilt:Enable motor tilt for yaw when disarmed, Delay Spoolup:Delay VTOL spoolup for 2 seconds after arming, ThrLandControl: enable throttle stick control of landing rate, DisableApproach: Disable use of approach and airbrake stages in VTOL landing, EnableLandResposition: enable pilot controlled repositioning in AUTO land. Descent will pause while repositioning. ARMVTOL: Arm only in VTOL or AUTO modes. CompleteTransition: to fixed wing if Q_TRANS_FAIL timer times out instead of QLAND. Force RTL mode: forces RTL mode on rc failsafe in VTOL modes overriding bit 5(USE_QRTL).
// @Bitmask: 0:Level Transition,1:Allow FW Takeoff,2:Allow FW Land,3:Vtol Takeoff Frame,4:Use FW Approach,5:Use QRTL,6:Use Governor,7:Force Qassist,8:Mtrs_Only_Qassist,10:Disarmed Yaw Tilt,11:Delay Spoolup,12:disable Qassist based on synthetic airspeed,13:Disable Ground Effect Compensation,14:Ignore forward flight angle limits in Qmodes,15:ThrLandControl,16:DisableApproach,17:EnableLandReposition,18:ARMVtol, 19: CompleteTransition if Q_TRANS_FAIL, 20: Force RTL mode on VTOL failsafes overriding bit 5(USE QRTL)
AP_GROUPINFO("OPTIONS", 58, QuadPlane, options, 0),
AP_SUBGROUPEXTENSION("",59, QuadPlane, var_info2),
// 60 is used above for VELZ_MAX_DN
// 61 was used above for TAILSIT_ANG_VT
AP_GROUPEND
};
// second table of user settable parameters for quadplanes, this
// allows us to go beyond the 64 parameter limit
const AP_Param::GroupInfo QuadPlane::var_info2[] = {
// @Param: TRANS_DECEL
// @DisplayName: Transition deceleration
// @Description: This is deceleration rate that will be used in calculating the stopping distance when transitioning from fixed wing flight to multicopter flight.
// @Units: m/s/s
// @Increment: 0.1
// @Range: 0.2 5
// @User: Standard
AP_GROUPINFO("TRANS_DECEL", 1, QuadPlane, transition_decel, 2.0),
// @Group: LOIT_
// @Path: ../libraries/AC_WPNav/AC_Loiter.cpp
AP_SUBGROUPPTR(loiter_nav, "LOIT_", 2, QuadPlane, AC_Loiter),
// 3: TAILSIT_GSCMAX
// @Param: TRIM_PITCH
// @DisplayName: Quadplane AHRS trim pitch
// @Description: This sets the compensation for the pitch angle trim difference between calibrated AHRS level and vertical flight pitch. NOTE! this is relative to calibrated AHRS trim, not forward flight trim which includes TRIM_PITCH_CD. For tailsitters, this is relative to a baseline of 90 degrees in AHRS.
// @Units: deg
// @Range: -10 +10
// @Increment: 0.1
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("TRIM_PITCH", 4, QuadPlane, ahrs_trim_pitch, 0),
// 5: TAILSIT_RLL_MX
#if QAUTOTUNE_ENABLED
// @Group: AUTOTUNE_
// @Path: ../libraries/AC_AutoTune/AC_AutoTune_Multi.cpp
AP_SUBGROUPINFO(qautotune, "AUTOTUNE_", 6, QuadPlane, QAutoTune),
#endif
// @Param: FW_LND_APR_RAD
// @DisplayName: Quadplane fixed wing landing approach radius
// @Description: This provides the radius used, when using a fixed wing landing approach. If set to 0 then the WP_LOITER_RAD will be selected.
// @Units: m
// @Range: 0 200
// @Increment: 5
// @User: Advanced
AP_GROUPINFO("FW_LND_APR_RAD", 7, QuadPlane, fw_land_approach_radius, 0),
// @Param: TRANS_FAIL
// @DisplayName: Quadplane transition failure time
// @Description: Maximum time allowed for forward transitions, exceeding this time will cancel the transition and the aircraft will immediately change to the mode set by Q_TRANS_FAIL_ACT or finish the transition depending on Q_OPTIONS bit 19. 0 for no limit.
// @Units: s
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TRANS_FAIL", 8, QuadPlane, transition_failure.timeout, 0),
// 9: TAILSIT_MOTMX
// @Param: THROTTLE_EXPO
// @DisplayName: Throttle expo strength
// @Description: Amount of curvature in throttle curve: 0 is linear, 1 is cubic
// @Range: 0 1
// @Increment: .1
// @User: Advanced
AP_GROUPINFO("THROTTLE_EXPO", 10, QuadPlane, throttle_expo, 0.2),
// @Param: ACRO_RLL_RATE
// @DisplayName: QACRO mode roll rate
// @Description: The maximum roll rate at full stick deflection in QACRO mode
// @Units: deg/s
// @Range: 10 500
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ACRO_RLL_RATE", 11, QuadPlane, acro_roll_rate, 360),
// @Param: ACRO_PIT_RATE
// @DisplayName: QACRO mode pitch rate
// @Description: The maximum pitch rate at full stick deflection in QACRO mode
// @Units: deg/s
// @Range: 10 500
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ACRO_PIT_RATE", 12, QuadPlane, acro_pitch_rate, 180),
// @Param: ACRO_YAW_RATE
// @DisplayName: QACRO mode yaw rate
// @Description: The maximum yaw rate at full stick deflection in QACRO mode
// @Units: deg/s
// @Range: 10 500
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ACRO_YAW_RATE", 13, QuadPlane, acro_yaw_rate, 90),
// @Param: TKOFF_FAIL_SCL
// @DisplayName: Takeoff time failure scalar
// @Description: Scalar for how long past the expected takeoff time a takeoff should be considered as failed and the vehicle will switch to QLAND. If set to 0 there is no limit on takeoff time.
// @Range: 1.1 5.0
// @Increment: 5.1
// @User: Advanced
AP_GROUPINFO("TKOFF_FAIL_SCL", 14, QuadPlane, takeoff_failure_scalar, 0),
// @Param: TKOFF_ARSP_LIM
// @DisplayName: Takeoff airspeed limit
// @Description: Airspeed limit during takeoff. If the airspeed exceeds this level the vehicle will switch to QLAND. This is useful for ensuring that you don't takeoff into excessively strong wind. If set to 0 there is no limit on airspeed during takeoff.
// @Units: m/s
// @Range: 0 20
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TKOFF_ARSP_LIM", 15, QuadPlane, maximum_takeoff_airspeed, 0),
// @Param: ASSIST_ALT
// @DisplayName: Quadplane assistance altitude
// @Description: This is the altitude below which quadplane assistance will be triggered. This acts the same way as Q_ASSIST_ANGLE and Q_ASSIST_SPEED, but triggers if the aircraft drops below the given altitude while the VTOL motors are not running. A value of zero disables this feature. The altutude is calculated as being above ground level. The height above ground is given from a Lidar used if available and RNGFND_LANDING=1. Otherwise it comes from terrain data if TERRAIN_FOLLOW=1 and comes from height above home otherwise.
// @Units: m
// @Range: 0 120
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ASSIST_ALT", 16, QuadPlane, assist_alt, 0),
// 17: TAILSIT_GSCMSK
// 18: TAILSIT_GSCMIN
// @Param: ASSIST_DELAY
// @DisplayName: Quadplane assistance delay
// @Description: This is delay between the assistance thresholds being met and the assistance starting.
// @Units: s
// @Range: 0 2
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("ASSIST_DELAY", 19, QuadPlane, assist_delay, 0.5),
// @Param: FWD_MANTHR_MAX
// @DisplayName: VTOL manual forward throttle max percent
// @Description: Maximum value for manual forward throttle; used with RC option FWD_THR (209)
// @Range: 0 100
AP_GROUPINFO("FWD_MANTHR_MAX", 20, QuadPlane, fwd_thr_max, 0),
// 21: TAILSIT_DSKLD
// 22: TILT_FIX_ANGLE
// 23: TILT_FIX_GAIN
// 24: TAILSIT_RAT_FW
// 25: TAILSIT_RAT_VT
// @Group: TAILSIT_
// @Path: tailsitter.cpp
AP_SUBGROUPINFO(tailsitter, "TAILSIT_", 26, QuadPlane, Tailsitter),
// @Group: TILT_
// @Path: tiltrotor.cpp
AP_SUBGROUPINFO(tiltrotor, "TILT_", 27, QuadPlane, Tiltrotor),
// @Param: BACKTRANS_MS
// @DisplayName: SLT and Tiltrotor back transition pitch limit duration
// @Description: Pitch angle will increase from 0 to angle max over this duration when switching into VTOL flight in a postion control mode. 0 Disables.
// @Units: ms
// @Range: 0 10000
AP_GROUPINFO("BACKTRANS_MS", 28, QuadPlane, back_trans_pitch_limit_ms, 3000),
// @Param: TRANS_FAIL_ACT
// @DisplayName: Quadplane transition failure action
// @Description: This sets the mode that is changed to when Q_TRANS_FAIL time elapses, if set. See also Q_OPTIONS bit 19: CompleteTransition if Q_TRANS_FAIL
// @Values: -1:Warn only, 0:QLand, 1:QRTL
AP_GROUPINFO("TRANS_FAIL_ACT", 29, QuadPlane, transition_failure.action, 0),
// @Group: WVANE_
// @Path: ../libraries/AC_AttitudeControl/AC_WeatherVane.cpp
AP_SUBGROUPPTR(weathervane, "WVANE_", 30, QuadPlane, AC_WeatherVane),
// @Param: LAND_ALTCHG
// @DisplayName: Land detection altitude change threshold
// @Description: The maximum altitude change allowed during land detection. You can raise this value if you find that landing detection takes a long time to complete. It is the maximum change in altitude over a period of 4 seconds for landing to be detected
// @Units: m
// @Range: 0.1 0.6
// @Increment: 0.05
// @User: Standard
AP_GROUPINFO("LAND_ALTCHG", 31, QuadPlane, landing_detect.detect_alt_change, 0.2),
// @Param: NAVALT_MIN
// @DisplayName: Minimum navigation altitude
// @Description: This is the altitude in meters above which navigation begins in auto takeoff. Below this altitude the target roll and pitch will be zero. A value of zero disables the feature
// @Range: 0 5
// @User: Advanced
AP_GROUPINFO("NAVALT_MIN", 32, QuadPlane, takeoff_navalt_min, 0),
// @Param: PLT_Y_RATE
// @DisplayName: Pilot controlled yaw rate
// @Description: Pilot controlled yaw rate max. Used in all pilot controlled modes except QAcro
// @Units: deg/s
// @Range: 1 360
// @User: Standard
// @Param: PLT_Y_EXPO
// @DisplayName: Pilot controlled yaw expo
// @Description: Pilot controlled yaw expo to allow faster rotation when stick at edges
// @Values: 0:Disabled,0.1:Very Low,0.2:Low,0.3:Medium,0.4:High,0.5:Very High
// @Range: -0.5 1.0
// @User: Advanced
// @Param: PLT_Y_RATE_TC
// @DisplayName: Pilot yaw rate control input time constant
// @Description: Pilot yaw rate control input time constant. Low numbers lead to sharper response, higher numbers to softer response.
// @Units: s
// @Range: 0 1
// @Increment: 0.01
// @Values: 0.5:Very Soft, 0.2:Soft, 0.15:Medium, 0.1:Crisp, 0.05:Very Crisp
// @User: Standard
AP_SUBGROUPINFO(command_model_pilot, "PLT_Y_", 33, QuadPlane, AC_CommandModel),
AP_GROUPEND
};
/*
defaults for all quadplanes
*/
static const struct AP_Param::defaults_table_struct defaults_table[] = {
{ "Q_A_RAT_RLL_P", 0.25 },
{ "Q_A_RAT_RLL_I", 0.25 },
{ "Q_A_RAT_RLL_FLTD", 10.0 },
{ "Q_A_RAT_RLL_SMAX", 50.0 },
{ "Q_A_RAT_PIT_P", 0.25 },
{ "Q_A_RAT_PIT_I", 0.25 },
{ "Q_A_RAT_PIT_FLTD", 10.0 },
{ "Q_A_RAT_PIT_SMAX", 50.0 },
{ "Q_A_RAT_YAW_SMAX", 50.0 },
{ "Q_A_RATE_R_MAX", 75.0 },
{ "Q_A_RATE_P_MAX", 75.0 },
{ "Q_A_RATE_Y_MAX", 75.0 },
{ "Q_M_SPOOL_TIME", 0.25 },
{ "Q_LOIT_ANG_MAX", 15.0 },
{ "Q_LOIT_ACC_MAX", 250.0 },
{ "Q_LOIT_BRK_ACCEL", 50.0 },
{ "Q_LOIT_BRK_JERK", 250 },
{ "Q_LOIT_SPEED", 500 },
{ "Q_WP_SPEED", 500 },
{ "Q_WP_ACCEL", 100 },
{ "Q_P_JERK_XY", 2 },
// lower rotational accel limits
{ "Q_A_ACCEL_R_MAX", 40000 },
{ "Q_A_ACCEL_P_MAX", 40000 },
{ "Q_A_ACCEL_Y_MAX", 10000 },
};
/*
conversion table for quadplane parameters
*/
const AP_Param::ConversionInfo q_conversion_table[] = {
{ Parameters::k_param_quadplane, 4044, AP_PARAM_FLOAT, "Q_P_POSZ_P" }, // Q_PZ_P
{ Parameters::k_param_quadplane, 4045, AP_PARAM_FLOAT, "Q_P_POSXY_P"}, // Q_PXY_P
{ Parameters::k_param_quadplane, 4046, AP_PARAM_FLOAT, "Q_P_VELXY_P"}, // Q_VXY_P
{ Parameters::k_param_quadplane, 78, AP_PARAM_FLOAT, "Q_P_VELXY_I"}, // Q_VXY_I
{ Parameters::k_param_quadplane, 142, AP_PARAM_FLOAT, "Q_P_VELXY_IMAX"}, // Q_VXY_IMAX
{ Parameters::k_param_quadplane, 206, AP_PARAM_FLOAT, "Q_P_VELXY_FLTE"}, // Q_VXY_FILT_HZ
{ Parameters::k_param_quadplane, 4047, AP_PARAM_FLOAT, "Q_P_VELZ_P"}, // Q_VZ_P
{ Parameters::k_param_quadplane, 4048, AP_PARAM_FLOAT, "Q_P_ACCZ_P"}, // Q_AZ_P
{ Parameters::k_param_quadplane, 80, AP_PARAM_FLOAT, "Q_P_ACCZ_I"}, // Q_AZ_I
{ Parameters::k_param_quadplane, 144, AP_PARAM_FLOAT, "Q_P_ACCZ_D"}, // Q_AZ_D
{ Parameters::k_param_quadplane, 336, AP_PARAM_FLOAT, "Q_P_ACCZ_IMAX"}, // Q_AZ_IMAX
{ Parameters::k_param_quadplane, 400, AP_PARAM_FLOAT, "Q_P_ACCZ_FLTD"}, // Q_AZ_FILT
{ Parameters::k_param_quadplane, 464, AP_PARAM_FLOAT, "Q_P_ACCZ_FF"}, // Q_AZ_FF
{ Parameters::k_param_quadplane, 276, AP_PARAM_FLOAT, "Q_LOIT_SPEED"}, // Q_WP_LOIT_SPEED
{ Parameters::k_param_quadplane, 468, AP_PARAM_FLOAT, "Q_LOIT_BRK_JERK" },// Q_WP_LOIT_JERK
{ Parameters::k_param_quadplane, 532, AP_PARAM_FLOAT, "Q_LOIT_ACC_MAX" }, // Q_WP_LOIT_MAXA
{ Parameters::k_param_quadplane, 596, AP_PARAM_FLOAT, "Q_LOIT_BRK_ACCEL" },// Q_WP_LOIT_MINA
{ Parameters::k_param_q_attitude_control, 385, AP_PARAM_FLOAT, "Q_A_RAT_RLL_FLTD" },// Q_A_RAT_RLL_FILT
{ Parameters::k_param_q_attitude_control, 386, AP_PARAM_FLOAT, "Q_A_RAT_PIT_FLTD" },// Q_A_RAT_PIT_FILT
{ Parameters::k_param_q_attitude_control, 387, AP_PARAM_FLOAT, "Q_A_RAT_YAW_FLTE" },// Q_A_RAT_YAW_FILT
{ Parameters::k_param_q_attitude_control, 449, AP_PARAM_FLOAT, "Q_A_RAT_RLL_FF" }, // Q_A_RAT_RLL_FF
{ Parameters::k_param_q_attitude_control, 450, AP_PARAM_FLOAT, "Q_A_RAT_PIT_FF" }, // Q_A_RAT_PIT_FF
{ Parameters::k_param_q_attitude_control, 451, AP_PARAM_FLOAT, "Q_A_RAT_YAW_FF" }, // Q_A_RAT_YAW_FILT
// tailsitter params have moved but retain the same names
{ Parameters::k_param_quadplane, 48, AP_PARAM_INT8, "Q_TAILSIT_ANGLE" },
{ Parameters::k_param_quadplane, 61, AP_PARAM_INT8, "Q_TAILSIT_ANG_VT" },
{ Parameters::k_param_quadplane, 50, AP_PARAM_INT8, "Q_TAILSIT_INPUT" },
{ Parameters::k_param_quadplane, 53, AP_PARAM_FLOAT, "Q_TAILSIT_VFGAIN" },
{ Parameters::k_param_quadplane, 54, AP_PARAM_FLOAT, "Q_TAILSIT_VHGAIN" },
{ Parameters::k_param_quadplane, 56, AP_PARAM_FLOAT, "Q_TAILSIT_VHPOW" },
{ Parameters::k_param_quadplane, 251, AP_PARAM_FLOAT, "Q_TAILSIT_GSCMAX" },
{ Parameters::k_param_quadplane, 379, AP_PARAM_FLOAT, "Q_TAILSIT_RLL_MX" },
{ Parameters::k_param_quadplane, 635, AP_PARAM_INT16, "Q_TAILSIT_MOTMX" },
{ Parameters::k_param_quadplane, 1147, AP_PARAM_INT16, "Q_TAILSIT_GSCMSK" },
{ Parameters::k_param_quadplane, 1211, AP_PARAM_FLOAT, "Q_TAILSIT_GSCMIN" },
{ Parameters::k_param_quadplane, 1403, AP_PARAM_FLOAT, "Q_TAILSIT_DSKLD" },
{ Parameters::k_param_quadplane, 1595, AP_PARAM_FLOAT, "Q_TAILSIT_RAT_FW" },
{ Parameters::k_param_quadplane, 1659, AP_PARAM_FLOAT, "Q_TAILSIT_RAT_FW" },
// tiltrotor params have moved but retain the same names
{ Parameters::k_param_quadplane, 37, AP_PARAM_INT16, "Q_TILT_MASK" },
{ Parameters::k_param_quadplane, 38, AP_PARAM_INT16, "Q_TILT_RATE_UP" },
{ Parameters::k_param_quadplane, 39, AP_PARAM_INT8, "Q_TILT_MAX" },
{ Parameters::k_param_quadplane, 47, AP_PARAM_INT8, "Q_TILT_TYPE" },
{ Parameters::k_param_quadplane, 49, AP_PARAM_INT16, "Q_TILT_RATE_DN" },
{ Parameters::k_param_quadplane, 55, AP_PARAM_FLOAT, "Q_TILT_YAW_ANGLE" },
{ Parameters::k_param_quadplane, 1467, AP_PARAM_FLOAT, "Q_TILT_FIX_ANGLE" },
{ Parameters::k_param_quadplane, 1531, AP_PARAM_FLOAT, "Q_TILT_FIX_GAIN" },
// PARAMETER_CONVERSION - Added: Jan-2022
{ Parameters::k_param_quadplane, 33, AP_PARAM_FLOAT, "Q_WVANE_GAIN" }, // Moved from quadplane to weathervane library
{ Parameters::k_param_quadplane, 34, AP_PARAM_FLOAT, "Q_WVANE_ANG_MIN" }, // Q_WVANE_MINROLL moved from quadplane to weathervane library
// PARAMETER_CONVERSION - Added: July-2022
{ Parameters::k_param_quadplane, 25, AP_PARAM_FLOAT, "Q_PLT_Y_RATE" }, // Moved from quadplane to command model library
};
// PARAMETER_CONVERSION - Added: Oct-2021
const AP_Param::ConversionInfo mot_pwm_conversion_table[] = {
{ Parameters::k_param_quadplane, 22, AP_PARAM_INT16, "Q_M_PWM_MIN" },
{ Parameters::k_param_quadplane, 23, AP_PARAM_INT16, "Q_M_PWM_MAX" },
};
QuadPlane::QuadPlane(AP_AHRS &_ahrs) :
ahrs(_ahrs)
{
AP_Param::setup_object_defaults(this, var_info);
AP_Param::setup_object_defaults(this, var_info2);
if (_singleton != nullptr) {
AP_HAL::panic("Can only be one Quadplane");
}
_singleton = this;
}
// setup default motors for the frame class
void QuadPlane::setup_default_channels(uint8_t num_motors)
{
for (uint8_t i=0; i<num_motors; i++) {
SRV_Channels::set_aux_channel_default(SRV_Channels::get_motor_function(i), CH_5+i);
}
}
bool QuadPlane::setup(void)
{
if (initialised) {
return true;
}
if (!enable || hal.util->get_soft_armed()) {
return false;
}
float loop_delta_t = 1.0 / plane.scheduler.get_loop_rate_hz();
/*
cope with upgrade from old AP_Motors values for frame_class
*/
AP_Int8 old_class;
const AP_Param::ConversionInfo cinfo { Parameters::k_param_quadplane, FRAME_CLASS_OLD_IDX, AP_PARAM_INT8, nullptr };
if (AP_Param::find_old_parameter(&cinfo, &old_class) && !frame_class.load()) {
uint8_t new_value = 0;
// map from old values to new values
switch (old_class.get()) {
case 0:
new_value = AP_Motors::MOTOR_FRAME_QUAD;
break;
case 1:
new_value = AP_Motors::MOTOR_FRAME_HEXA;
break;
case 2:
new_value = AP_Motors::MOTOR_FRAME_OCTA;
break;
case 3:
new_value = AP_Motors::MOTOR_FRAME_OCTAQUAD;
break;
case 4:
new_value = AP_Motors::MOTOR_FRAME_Y6;
break;
}
frame_class.set_and_save(new_value);
}
if (hal.util->available_memory() <
4096 + sizeof(*motors) + sizeof(*attitude_control) + sizeof(*pos_control) + sizeof(*wp_nav) + sizeof(*ahrs_view) + sizeof(*loiter_nav) + sizeof(*weathervane)) {
AP_BoardConfig::config_error("Not enough memory for quadplane");
}
/*
dynamically allocate the key objects for quadplane. This ensures
that the objects don't affect the vehicle unless enabled and
also saves memory when not in use
*/
switch ((AP_Motors::motor_frame_class)frame_class) {
case AP_Motors::MOTOR_FRAME_QUAD:
setup_default_channels(4);
break;
case AP_Motors::MOTOR_FRAME_HEXA:
setup_default_channels(6);
break;
case AP_Motors::MOTOR_FRAME_OCTA:
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
setup_default_channels(8);
break;
case AP_Motors::MOTOR_FRAME_Y6:
setup_default_channels(7);
break;
case AP_Motors::MOTOR_FRAME_TRI:
SRV_Channels::set_default_function(CH_5, SRV_Channel::k_motor1);
SRV_Channels::set_default_function(CH_6, SRV_Channel::k_motor2);
SRV_Channels::set_default_function(CH_8, SRV_Channel::k_motor4);
SRV_Channels::set_default_function(CH_11, SRV_Channel::k_motor7);
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER);
break;
case AP_Motors::MOTOR_FRAME_TAILSITTER:
case AP_Motors::MOTOR_FRAME_SCRIPTING_MATRIX:
case AP_Motors::MOTOR_FRAME_DYNAMIC_SCRIPTING_MATRIX:
break;
default:
AP_BoardConfig::config_error("Unsupported Q_FRAME_CLASS %u", (unsigned int)(frame_class.get()));
}
// Make sure not both a tailsiter and tiltrotor
if ((tailsitter.enable > 0) && (tiltrotor.enable > 0)) {
AP_BoardConfig::config_error("set TAILSIT_ENABLE 0 or TILT_ENABLE 0");
}
switch ((AP_Motors::motor_frame_class)frame_class) {
case AP_Motors::MOTOR_FRAME_TRI:
motors = new AP_MotorsTri(plane.scheduler.get_loop_rate_hz(), rc_speed);
motors_var_info = AP_MotorsTri::var_info;
break;
case AP_Motors::MOTOR_FRAME_TAILSITTER:
// this is a duo-motor tailsitter
tailsitter.tailsitter_motors = new AP_MotorsTailsitter(plane.scheduler.get_loop_rate_hz(), rc_speed);
motors = tailsitter.tailsitter_motors;
motors_var_info = AP_MotorsTailsitter::var_info;
break;
case AP_Motors::MOTOR_FRAME_DYNAMIC_SCRIPTING_MATRIX:
#if AP_SCRIPTING_ENABLED
motors = new AP_MotorsMatrix_Scripting_Dynamic(plane.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsMatrix_Scripting_Dynamic::var_info;
#endif // AP_SCRIPTING_ENABLED
break;
default:
motors = new AP_MotorsMatrix(plane.scheduler.get_loop_rate_hz(), rc_speed);
motors_var_info = AP_MotorsMatrix::var_info;
break;
}
if (!motors) {
AP_BoardConfig::allocation_error("motors");
}
AP_Param::load_object_from_eeprom(motors, motors_var_info);
// create the attitude view used by the VTOL code
ahrs_view = ahrs.create_view((tailsitter.enable > 0) ? ROTATION_PITCH_90 : ROTATION_NONE, ahrs_trim_pitch);
if (ahrs_view == nullptr) {
AP_BoardConfig::allocation_error("ahrs_view");
}
attitude_control = new AC_AttitudeControl_TS(*ahrs_view, aparm, *motors, loop_delta_t);
if (!attitude_control) {
AP_BoardConfig::allocation_error("attitude_control");
}
AP_Param::load_object_from_eeprom(attitude_control, attitude_control->var_info);
pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control, loop_delta_t);
if (!pos_control) {
AP_BoardConfig::allocation_error("pos_control");
}
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info);
wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
if (!wp_nav) {
AP_BoardConfig::allocation_error("wp_nav");
}
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info);
loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
if (!loiter_nav) {
AP_BoardConfig::allocation_error("loiter_nav");
}
AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info);
weathervane = new AC_WeatherVane();
if (!weathervane) {
AP_BoardConfig::allocation_error("weathervane");
}
AP_Param::load_object_from_eeprom(weathervane, weathervane->var_info);
motors->init(frame_class, frame_type);
motors->update_throttle_range();
motors->set_update_rate(rc_speed);
attitude_control->parameter_sanity_check();
// Try to convert mot PWM params, if still invalid force conversion
AP_Param::convert_old_parameters(&mot_pwm_conversion_table[0], ARRAY_SIZE(mot_pwm_conversion_table));
if (!motors->check_mot_pwm_params()) {
AP_Param::convert_old_parameters(&mot_pwm_conversion_table[0], ARRAY_SIZE(mot_pwm_conversion_table), AP_Param::CONVERT_FLAG_FORCE);
}
// setup the trim of any motors used by AP_Motors so I/O board
// failsafe will disable motors
uint32_t mask = plane.quadplane.motors->get_motor_mask();
hal.rcout->set_failsafe_pwm(mask, plane.quadplane.motors->get_pwm_output_min());
// default QAssist state as set with Q_OPTIONS
if ((options & OPTION_Q_ASSIST_FORCE_ENABLE) != 0) {
q_assist_state = Q_ASSIST_STATE_ENUM::Q_ASSIST_FORCE;
}
setup_defaults();
AP_Param::convert_old_parameters(&q_conversion_table[0], ARRAY_SIZE(q_conversion_table));
tailsitter.setup();
tiltrotor.setup();
if (!transition) {
transition = new SLT_Transition(*this, motors);
}
if (!transition) {
AP_BoardConfig::allocation_error("transition");
}
// init wp_nav variables after detaults are setup
wp_nav->wp_and_spline_init();
transition->force_transition_complete();
// param count will have changed
AP_Param::invalidate_count();
char frame_and_type_string[30];
motors->get_frame_and_type_string(frame_and_type_string, ARRAY_SIZE(frame_and_type_string));
gcs().send_text(MAV_SEVERITY_INFO, "QuadPlane initialised, %s", frame_and_type_string);
initialised = true;
return true;
}
/*
setup default parameters from defaults_table
*/
void QuadPlane::setup_defaults(void)
{
AP_Param::set_defaults_from_table(defaults_table, ARRAY_SIZE(defaults_table));
// reset ESC calibration
if (esc_calibration != 0) {
esc_calibration.set_and_save(0);
}
// Quadplanes need the same level of GPS error checking as Copters do, Plane is more relaxed
AP_Param::set_default_by_name("EK2_CHECK_SCALE",100);
AP_Param::set_default_by_name("EK3_CHECK_SCALE",100);
}
// run ESC calibration
void QuadPlane::run_esc_calibration(void)
{
if (!motors->armed()) {
motors->set_throttle_passthrough_for_esc_calibration(0);
AP_Notify::flags.esc_calibration = false;
return;
}
if (!AP_Notify::flags.esc_calibration) {
gcs().send_text(MAV_SEVERITY_INFO, "Starting ESC calibration");
}
AP_Notify::flags.esc_calibration = true;
switch (esc_calibration) {
case 1:
// throttle based calibration
motors->set_throttle_passthrough_for_esc_calibration(plane.get_throttle_input() * 0.01f);
break;
case 2:
// full range calibration
motors->set_throttle_passthrough_for_esc_calibration(1);
break;
}
}
/*
ask the multicopter attitude control to match the roll and pitch rates being demanded by the
fixed wing controller if not in a pure VTOL mode
*/
void QuadPlane::multicopter_attitude_rate_update(float yaw_rate_cds)
{
bool use_multicopter_control = in_vtol_mode() && !tailsitter.in_vtol_transition();
bool use_yaw_target = false;
float yaw_target_cd = 0.0;
if (!use_multicopter_control && transition->update_yaw_target(yaw_target_cd)) {
use_multicopter_control = true;
use_yaw_target = true;
}
// normal control modes for VTOL and FW flight
// tailsitter in transition to VTOL flight is not really in a VTOL mode yet
if (use_multicopter_control) {
// Pilot input, use yaw rate time constant
set_pilot_yaw_rate_time_constant();
// tailsitter-only body-frame roll control options
// Angle mode attitude control for pitch and body-frame roll, rate control for euler yaw.
if (tailsitter.enabled() &&
(tailsitter.input_type & Tailsitter::input::TAILSITTER_INPUT_BF_ROLL)) {
if (!(tailsitter.input_type & Tailsitter::input::TAILSITTER_INPUT_PLANE)) {
// In multicopter input mode, the roll and yaw stick axes are independent of pitch
attitude_control->input_euler_rate_yaw_euler_angle_pitch_bf_roll(false,
plane.nav_roll_cd,
plane.nav_pitch_cd,
yaw_rate_cds);
return;
} else {
// In plane input mode, the roll and yaw sticks are swapped
// and their effective axes rotate from yaw to roll and vice versa
// as pitch goes from zero to 90.
// So it is necessary to also rotate their scaling.
// Get the roll angle and yaw rate limits
int16_t roll_limit = aparm.angle_max;
// separate limit for tailsitter roll, if set
if (tailsitter.max_roll_angle > 0) {
roll_limit = tailsitter.max_roll_angle * 100.0f;
}
// Prevent a divide by zero
const float yaw_rate_max = command_model_pilot.get_rate();
float yaw_rate_limit = ((yaw_rate_max < 1.0f) ? 1 : yaw_rate_max) * 100.0f;
float yaw2roll_scale = roll_limit / yaw_rate_limit;
// Rotate as a function of Euler pitch and swap roll/yaw
float euler_pitch = radians(.01f * plane.nav_pitch_cd);
float spitch = fabsf(sinf(euler_pitch));
float y2r_scale = linear_interpolate(1, yaw2roll_scale, spitch, 0, 1);
float p_yaw_rate = plane.nav_roll_cd / y2r_scale;
float p_roll_angle = -y2r_scale * yaw_rate_cds;
attitude_control->input_euler_rate_yaw_euler_angle_pitch_bf_roll(true,
p_roll_angle,
plane.nav_pitch_cd,
p_yaw_rate);
return;
}
}
if (use_yaw_target) {
attitude_control->input_euler_angle_roll_pitch_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
yaw_target_cd,
true);
} else {
// use euler angle attitude control
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
yaw_rate_cds);
}
} else {
// use the fixed wing desired rates
Vector3f bf_input_cd { plane.rollController.get_pid_info().target * 100.0f,
plane.pitchController.get_pid_info().target * 100.0f,
yaw_rate_cds };
// rotate into multicopter attitude refence frame
ahrs_view->rotate(bf_input_cd);
// disable yaw time constant for 1:1 match of desired rates
disable_yaw_rate_time_constant();
attitude_control->input_rate_bf_roll_pitch_yaw_2(bf_input_cd.x, bf_input_cd.y, bf_input_cd.z);
}
}
// hold in stabilize with given throttle
void QuadPlane::hold_stabilize(float throttle_in)
{
// call attitude controller
multicopter_attitude_rate_update(get_desired_yaw_rate_cds(false));
if ((throttle_in <= 0) && !air_mode_active()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
attitude_control->set_throttle_out(0, true, 0);
relax_attitude_control();
} else {
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
bool should_boost = true;
if (tailsitter.enabled() && assisted_flight) {
// tailsitters in forward flight should not use angle boost
should_boost = false;
}
attitude_control->set_throttle_out(throttle_in, should_boost, 0);
}
}
// run the multicopter Z controller
void QuadPlane::run_z_controller(void)
{
if (motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED ) {
return;
}
const uint32_t now = AP_HAL::millis();
if (tailsitter.in_vtol_transition(now)) {
// never run Z controller in tailsitter transtion
return;
}
if ((now - last_pidz_active_ms) > 20) {
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_velocity_z_max_dn(), pilot_velocity_z_max_up, pilot_accel_z);
// initialise the vertical position controller
if (!tailsitter.enabled()) {
pos_control->init_z_controller();
} else {
// initialise the vertical position controller with no descent
pos_control->init_z_controller_no_descent();
}
last_pidz_init_ms = now;
}
last_pidz_active_ms = now;
pos_control->update_z_controller();
}
void QuadPlane::relax_attitude_control()
{
// disable roll and yaw control for vectored tailsitters
// if not a vectored tailsitter completely disable attitude control
attitude_control->relax_attitude_controllers(!tailsitter.relax_pitch());
}
/*
check for an EKF yaw reset
*/
void QuadPlane::check_yaw_reset(void)
{
if (!initialised) {
return;
}
float yaw_angle_change_rad = 0.0f;
uint32_t new_ekfYawReset_ms = ahrs.getLastYawResetAngle(yaw_angle_change_rad);
if (new_ekfYawReset_ms != ekfYawReset_ms) {
attitude_control->inertial_frame_reset();
ekfYawReset_ms = new_ekfYawReset_ms;
AP::logger().Write_Event(LogEvent::EKF_YAW_RESET);
}
}
void QuadPlane::set_climb_rate_cms(float target_climb_rate_cms, bool force_descend)
{
pos_control->input_vel_accel_z(target_climb_rate_cms, 0, force_descend);
}
/*
hold hover with target climb rate
*/
void QuadPlane::hold_hover(float target_climb_rate_cms)
{
// motors use full range
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_velocity_z_max_dn(), pilot_velocity_z_max_up, pilot_accel_z);
// call attitude controller
multicopter_attitude_rate_update(get_desired_yaw_rate_cds(false));
// call position controller
set_climb_rate_cms(target_climb_rate_cms, false);
run_z_controller();
}
float QuadPlane::get_pilot_throttle()
{
// get scaled throttle input
float throttle_in = plane.channel_throttle->get_control_in();
// normalize to [0,1]
throttle_in /= plane.channel_throttle->get_range();
if (is_positive(throttle_expo)) {
// get hover throttle level [0,1]
float thr_mid = motors->get_throttle_hover();
float thrust_curve_expo = constrain_float(throttle_expo, 0.0f, 1.0f);
// this puts mid stick at hover throttle
return throttle_curve(thr_mid, thrust_curve_expo, throttle_in);
} else {
return throttle_in;
}
}
/*
get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle.
The angle_max_cd and angle_limit_cd are mode dependent
*/
void QuadPlane::get_pilot_desired_lean_angles(float &roll_out_cd, float &pitch_out_cd, float angle_max_cd, float angle_limit_cd) const
{
// failsafe check
if (plane.failsafe.rc_failsafe || plane.failsafe.throttle_counter > 0) {
roll_out_cd = 0;
pitch_out_cd = 0;
return;
}
// fetch roll and pitch inputs
roll_out_cd = plane.channel_roll->get_control_in();
pitch_out_cd = plane.channel_pitch->get_control_in();
// limit max lean angle, always allow for 10 degrees
angle_limit_cd = constrain_float(angle_limit_cd, 1000.0f, angle_max_cd);
// scale roll and pitch inputs to ANGLE_MAX parameter range
float scaler = angle_max_cd/4500.0;
roll_out_cd *= scaler;
pitch_out_cd *= scaler;
// apply circular limit
float total_in = norm(pitch_out_cd, roll_out_cd);
if (total_in > angle_limit_cd) {
float ratio = angle_limit_cd / total_in;
roll_out_cd *= ratio;
pitch_out_cd *= ratio;
}
// apply lateral tilt to euler roll conversion
roll_out_cd = 100 * degrees(atanf(cosf(radians(pitch_out_cd*0.01))*tanf(radians(roll_out_cd*0.01))));
}
/*
get pilot throttle in for landing code. Return value on scale of 0 to 1
*/
float QuadPlane::get_pilot_land_throttle(void) const
{
if (plane.rc_failsafe_active()) {
// assume zero throttle if lost RC
return 0;
}
// get scaled throttle input
float throttle_in = plane.channel_throttle->get_control_in();
// normalize to [0,1]
throttle_in /= plane.channel_throttle->get_range();
return constrain_float(throttle_in, 0, 1);
}
// helper for is_flying()
bool QuadPlane::is_flying(void)
{
if (!available()) {
return false;
}
if (plane.control_mode == &plane.mode_guided && guided_takeoff) {
return true;
}
if (motors->get_throttle() > 0.01f && !motors->limit.throttle_lower) {
return true;
}
if (tailsitter.in_vtol_transition()) {
return true;
}
return false;
}
// crude landing detector to prevent tipover
bool QuadPlane::should_relax(void)
{
const uint32_t tnow = millis();
bool motor_at_lower_limit = motors->limit.throttle_lower && attitude_control->is_throttle_mix_min();
if (motors->get_throttle() < 0.01f) {
motor_at_lower_limit = true;
}
if (!motor_at_lower_limit) {
landing_detect.lower_limit_start_ms = 0;
landing_detect.land_start_ms = 0;
return false;
} else if (landing_detect.lower_limit_start_ms == 0) {
landing_detect.lower_limit_start_ms = tnow;
}
return (tnow - landing_detect.lower_limit_start_ms) > 1000;
}
// see if we are flying in vtol
bool QuadPlane::is_flying_vtol(void) const
{
if (!available()) {
return false;
}
if (motors->get_spool_state() == AP_Motors::SpoolState::SHUT_DOWN) {
// assume that with no motor outputs we're not flying in VTOL mode
return false;
}
if (motors->get_throttle() > 0.01f) {
// if we are demanding more than 1% throttle then don't consider aircraft landed
return true;
}
if (plane.control_mode->is_vtol_man_throttle() && air_mode_active()) {
// in manual throttle modes with airmode on, don't consider aircraft landed
return true;
}
if (plane.control_mode == &plane.mode_guided && guided_takeoff) {
return true;
}
if (plane.control_mode->is_vtol_man_mode()) {
// in manual flight modes only consider aircraft landed when pilot demanded throttle is zero
return is_positive(plane.get_throttle_input());
}
if (in_vtol_mode() && millis() - landing_detect.lower_limit_start_ms > 5000) {
// use landing detector
return true;
}
return false;
}
/*
smooth out descent rate for landing to prevent a jerk as we get to
land_final_alt.
*/
float QuadPlane::landing_descent_rate_cms(float height_above_ground)
{
if (poscontrol.get_state() == QPOS_LAND_FINAL) {
// when in final use descent rate for final even if alt has climbed again
height_above_ground = MIN(height_above_ground, land_final_alt);
}
const float max_climb_speed = wp_nav->get_default_speed_up();
float ret = linear_interpolate(land_speed_cms, wp_nav->get_default_speed_down(),
height_above_ground,
land_final_alt, land_final_alt+6);
if ((options & OPTION_THR_LANDING_CONTROL) != 0) {
// allow throttle control for landing speed
const float thr_in = get_pilot_land_throttle();
if (thr_in > THR_CTRL_LAND_THRESH) {
thr_ctrl_land = true;
}
if (thr_ctrl_land) {
const float dz = 0.1;
const float thresh1 = 0.5+dz;
const float thresh2 = 0.5-dz;
const float scaling = 1.0 / (0.5 - dz);
if (thr_in > thresh1) {
// start climbing
ret = -(thr_in - thresh1)*scaling*max_climb_speed;
} else if (thr_in > thresh2) {
// hold height
ret = 0;
} else {
ret *= (thresh2 - thr_in)*scaling;
}
}
}
if (poscontrol.pilot_correction_active) {
// stop descent when repositioning
ret = MIN(0, ret);
}
return ret;
}
/*
get pilot input yaw rate in cd/s
*/
float QuadPlane::get_pilot_input_yaw_rate_cds(void) const
{
const auto rudder_in = plane.channel_rudder->get_control_in();
bool manual_air_mode = plane.control_mode->is_vtol_man_throttle() && air_mode_active();
if (!manual_air_mode &&
!is_positive(plane.get_throttle_input()) &&
(!plane.control_mode->does_auto_throttle() || motors->limit.throttle_lower) &&
plane.arming.get_rudder_arming_type() == AP_Arming::RudderArming::ARMDISARM &&
rudder_in < 0 &&
fabsf(inertial_nav.get_velocity_z_up_cms()) < 0.5 * get_pilot_velocity_z_max_dn()) {
// the user may be trying to disarm, disable pilot yaw control
return 0;
}
if ((plane.g.stick_mixing == StickMixing::NONE) &&
(plane.control_mode == &plane.mode_qrtl ||
plane.control_mode->is_guided_mode() ||
in_vtol_auto())) {
return 0;
}
// add in rudder input
const float yaw_rate_max = command_model_pilot.get_rate();
float max_rate = yaw_rate_max;
if (!in_vtol_mode() && tailsitter.enabled()) {
// scale by RUDD_DT_GAIN when not in a VTOL mode for
// tailsitters. This allows for flat turns in tailsitters for
// fixed wing modes if you want them, but prevents crazy yaw
// rate demands in fixed wing based on your preferred yaw rate
// when hovering
max_rate *= plane.g2.rudd_dt_gain * 0.01;
}
if (tailsitter.enabled() &&
tailsitter.input_type & Tailsitter::input::TAILSITTER_INPUT_BF_ROLL) {
// must have a non-zero max yaw rate for scaling to work
max_rate = (yaw_rate_max < 1.0f) ? 1 : yaw_rate_max;
}
return input_expo(rudder_in * (1/4500.0), command_model_pilot.get_expo()) * max_rate * 100.0;
}
/*
get overall desired yaw rate in cd/s
*/
float QuadPlane::get_desired_yaw_rate_cds(bool should_weathervane)
{
float yaw_cds = 0;
if (assisted_flight) {
// use bank angle to get desired yaw rate
yaw_cds += desired_auto_yaw_rate_cds();
}
// add in pilot input
yaw_cds += get_pilot_input_yaw_rate_cds();
if (should_weathervane) {
// add in weathervaning
yaw_cds += get_weathervane_yaw_rate_cds();
}
return yaw_cds;
}
// get pilot desired climb rate in cm/s
float QuadPlane::get_pilot_desired_climb_rate_cms(void) const
{
if (!rc().has_valid_input()) {
// no valid input means no sensible pilot desired climb rate.
// descend at 0.5m/s for now
return -50;
}
uint16_t dead_zone = plane.channel_throttle->get_dead_zone();
uint16_t trim = (plane.channel_throttle->get_radio_max() + plane.channel_throttle->get_radio_min())/2;
const float throttle_request = plane.channel_throttle->pwm_to_angle_dz_trim(dead_zone, trim) *0.01f;
return throttle_request * (throttle_request > 0.0f ? pilot_velocity_z_max_up : get_pilot_velocity_z_max_dn());
}
/*
initialise throttle_wait based on throttle and is_flying()
*/
void QuadPlane::init_throttle_wait(void)
{
if (plane.get_throttle_input() >= 10 ||
plane.is_flying()) {
throttle_wait = false;
} else {
throttle_wait = true;
}
}
// set motor arming
void QuadPlane::set_armed(bool armed)
{
if (!initialised) {
return;
}
motors->armed(armed);
if (plane.control_mode == &plane.mode_guided) {
guided_wait_takeoff = armed;
}
}
/*
estimate desired climb rate for assistance (in cm/s)
*/
float QuadPlane::assist_climb_rate_cms(void) const
{
float climb_rate;
if (plane.control_mode->does_auto_throttle()) {
// use altitude_error_cm, spread over 10s interval
climb_rate = plane.altitude_error_cm * 0.1f;
} else {
// otherwise estimate from pilot input
climb_rate = plane.g.flybywire_climb_rate * (plane.nav_pitch_cd/(float)plane.aparm.pitch_limit_max_cd);
climb_rate *= plane.get_throttle_input();
}
climb_rate = constrain_float(climb_rate, -wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up());
// bring in the demanded climb rate over 2 seconds
const uint32_t ramp_up_time_ms = 2000;
const uint32_t dt_since_start = last_pidz_active_ms - last_pidz_init_ms;
if (dt_since_start < ramp_up_time_ms) {
climb_rate = linear_interpolate(0, climb_rate, dt_since_start, 0, ramp_up_time_ms);
}
return climb_rate;
}
/*
calculate desired yaw rate for assistance
*/
float QuadPlane::desired_auto_yaw_rate_cds(void) const
{
float aspeed;
if (!ahrs.airspeed_estimate(aspeed) || aspeed < plane.aparm.airspeed_min) {
aspeed = plane.aparm.airspeed_min;
}
if (aspeed < 1) {
aspeed = 1;
}
float yaw_rate = degrees(GRAVITY_MSS * tanf(radians(plane.nav_roll_cd*0.01f))/aspeed) * 100;
return yaw_rate;
}
/*
return true if the quadplane should provide stability assistance
*/
bool QuadPlane::should_assist(float aspeed, bool have_airspeed)
{
if (!hal.util->get_soft_armed() || (q_assist_state == Q_ASSIST_STATE_ENUM::Q_ASSIST_DISABLED) || tailsitter.is_control_surface_tailsitter()) {
// disarmed or disabled by aux switch or because a control surface tailsitter
in_angle_assist = false;
angle_error_start_ms = 0;
return false;
}
if (!tailsitter.enabled() && !( (plane.control_mode->does_auto_throttle() && !plane.throttle_suppressed)
|| is_positive(plane.get_throttle_input())
|| plane.is_flying() ) ) {
// not in a flight mode and condition where it would be safe to turn on vertial lift motors
// skip this check for tailsitters because the forward and vertial motors are the same and are controled directly by throttle imput unlike other quadplanes
in_angle_assist = false;
angle_error_start_ms = 0;
return false;
}
if (q_assist_state == Q_ASSIST_STATE_ENUM::Q_ASSIST_FORCE) {
// force enabled, no need to check thresholds
in_angle_assist = false;
angle_error_start_ms = 0;
return true;
}
if (assist_speed <= 0) {
// disabled via speed threshold
in_angle_assist = false;
angle_error_start_ms = 0;
return false;
}
// assistance due to Q_ASSIST_SPEED
// if option bit is enabled only allow assist with real airspeed sensor
if ((have_airspeed && aspeed < assist_speed) &&
(((options & OPTION_DISABLE_SYNTHETIC_AIRSPEED_ASSIST) == 0) || ahrs.airspeed_sensor_enabled())) {
in_angle_assist = false;
angle_error_start_ms = 0;
return true;
}
const uint32_t now = AP_HAL::millis();
/*
optional assistance when altitude is too close to the ground
*/
if (assist_alt > 0) {
float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing);
if (height_above_ground < assist_alt) {
if (alt_error_start_ms == 0) {
alt_error_start_ms = now;
}
if (now - alt_error_start_ms > assist_delay*1000) {
// we've been below assistant alt for Q_ASSIST_DELAY seconds
if (!in_alt_assist) {
in_alt_assist = true;
gcs().send_text(MAV_SEVERITY_INFO, "Alt assist %.1fm", height_above_ground);
}
return true;
}
} else {
in_alt_assist = false;
alt_error_start_ms = 0;
}
}
if (assist_angle <= 0) {
in_angle_assist = false;
angle_error_start_ms = 0;
return false;
}
/*
now check if we should provide assistance due to attitude error
*/
const uint16_t allowed_envelope_error_cd = 500U;
if (labs(ahrs.roll_sensor) <= plane.aparm.roll_limit_cd+allowed_envelope_error_cd &&
ahrs.pitch_sensor < plane.aparm.pitch_limit_max_cd+allowed_envelope_error_cd &&
ahrs.pitch_sensor > -(allowed_envelope_error_cd-plane.aparm.pitch_limit_min_cd)) {
// we are inside allowed attitude envelope
in_angle_assist = false;
angle_error_start_ms = 0;
return false;
}
int32_t max_angle_cd = 100U*assist_angle;
if ((labs(ahrs.roll_sensor - plane.nav_roll_cd) < max_angle_cd &&
labs(ahrs.pitch_sensor - plane.nav_pitch_cd) < max_angle_cd)) {
// not beyond angle error
angle_error_start_ms = 0;
in_angle_assist = false;
return false;
}
if (angle_error_start_ms == 0) {
angle_error_start_ms = now;
}
bool ret = (now - angle_error_start_ms) >= assist_delay*1000;
if (ret && !in_angle_assist) {
in_angle_assist = true;
gcs().send_text(MAV_SEVERITY_INFO, "Angle assist r=%d p=%d",
(int)(ahrs.roll_sensor/100),
(int)(ahrs.pitch_sensor/100));
}
return ret;
}
/*
update for transition from quadplane to fixed wing mode
*/
void SLT_Transition::update()
{
const uint32_t now = millis();
if (!hal.util->get_soft_armed()) {
// reset the failure timer if we are disarmed
transition_start_ms = now;
}
float aspeed;
bool have_airspeed = quadplane.ahrs.airspeed_estimate(aspeed);
/*
see if we should provide some assistance
*/
if (quadplane.should_assist(aspeed, have_airspeed)) {
// the quad should provide some assistance to the plane
quadplane.assisted_flight = true;
// update transition state for vehicles using airspeed wait
if (!in_forced_transition) {
if (transition_state != TRANSITION_AIRSPEED_WAIT) {
gcs().send_text(MAV_SEVERITY_INFO, "Transition started airspeed %.1f", (double)aspeed);
}
transition_state = TRANSITION_AIRSPEED_WAIT;
if (transition_start_ms == 0) {
transition_start_ms = now;
}
}
} else {
quadplane.assisted_flight = false;
}
// if rotors are fully forward then we are not transitioning,
// unless we are waiting for airspeed to increase (in which case
// the tilt will decrease rapidly)
if (quadplane.tiltrotor.fully_fwd() && transition_state != TRANSITION_AIRSPEED_WAIT) {
if (transition_state == TRANSITION_TIMER) {
gcs().send_text(MAV_SEVERITY_INFO, "Transition FW done");
}
transition_state = TRANSITION_DONE;
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
}
if (transition_state < TRANSITION_TIMER) {
// set a single loop pitch limit in TECS
if (plane.ahrs.groundspeed() < 3) {
// until we have some ground speed limit to zero pitch
plane.TECS_controller.set_pitch_max_limit(0);
} else {
plane.TECS_controller.set_pitch_max_limit(quadplane.transition_pitch_max);
}
} else if (transition_state < TRANSITION_DONE) {
plane.TECS_controller.set_pitch_max_limit((quadplane.transition_pitch_max+1)*2);
}
if (transition_state < TRANSITION_DONE) {
// during transition we ask TECS to use a synthetic
// airspeed. Otherwise the pitch limits will throw off the
// throttle calculation which is driven by pitch
plane.TECS_controller.use_synthetic_airspeed();
}
switch (transition_state) {
case TRANSITION_AIRSPEED_WAIT: {
quadplane.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// we hold in hover until the required airspeed is reached
if (transition_start_ms == 0) {
gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed wait");
transition_start_ms = now;
}
// check if we have failed to transition while in TRANSITION_AIRSPEED_WAIT
if (transition_start_ms != 0 &&
(quadplane.transition_failure.timeout > 0) &&
((now - transition_start_ms) > ((uint32_t)quadplane.transition_failure.timeout * 1000))) {
if (!quadplane.transition_failure.warned) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "Transition failed, exceeded time limit");
quadplane.transition_failure.warned = true;
}
// if option is set and ground speed> 1/2 arspd_fbw_min for non-tiltrotors, then complete transition, otherwise QLAND.
// tiltrotors will immediately transition
const bool tiltrotor_with_ground_speed = quadplane.tiltrotor.enabled() && (plane.ahrs.groundspeed() > plane.aparm.airspeed_min * 0.5);
if ((quadplane.options & QuadPlane::OPTION_TRANS_FAIL_TO_FW) && tiltrotor_with_ground_speed) {
transition_state = TRANSITION_TIMER;
in_forced_transition = true;
} else {
switch (QuadPlane::TRANS_FAIL::ACTION(quadplane.transition_failure.action)) {
case QuadPlane::TRANS_FAIL::ACTION::QLAND:
plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TRANSITION);
break;
case QuadPlane::TRANS_FAIL::ACTION::QRTL:
plane.set_mode(plane.mode_qrtl, ModeReason::VTOL_FAILED_TRANSITION);
quadplane.poscontrol.set_state(QuadPlane::QPOS_POSITION1);
break;
default:
break;
}
}
} else {
quadplane.transition_failure.warned = false;
}
transition_low_airspeed_ms = now;
if (have_airspeed && aspeed > plane.aparm.airspeed_min && !quadplane.assisted_flight) {
transition_state = TRANSITION_TIMER;
airspeed_reached_tilt = quadplane.tiltrotor.current_tilt;
gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed reached %.1f", (double)aspeed);
}
quadplane.assisted_flight = true;
// do not allow a climb on the quad motors during transition a
// climb would add load to the airframe, and prolongs the
// transition. We don't limit the climb rate on tilt rotors as
// otherwise the plane can end up in high-alpha flight with
// low VTOL thrust and may not complete a transition
float climb_rate_cms = quadplane.assist_climb_rate_cms();
if ((quadplane.options & QuadPlane::OPTION_LEVEL_TRANSITION) && !quadplane.tiltrotor.enabled()) {
climb_rate_cms = MIN(climb_rate_cms, 0.0f);
}
quadplane.hold_hover(climb_rate_cms);
if (!quadplane.tiltrotor.is_vectored()) {
// set desired yaw to current yaw in both desired angle
// and rate request. This reduces wing twist in transition
// due to multicopter yaw demands. This is disabled when
// using vectored yaw for tilt-rotors as the yaw control
// is needed to maintain good control in forward
// transitions
quadplane.attitude_control->reset_yaw_target_and_rate();
quadplane.attitude_control->rate_bf_yaw_target(quadplane.ahrs.get_gyro().z);
}
if (quadplane.tiltrotor.enabled() && !quadplane.tiltrotor.has_fw_motor()) {
// tilt rotors without decidated fw motors do not have forward throttle output in this stage
// prevent throttle I wind up
plane.TECS_controller.reset_throttle_I();
}
last_throttle = motors->get_throttle();
// reset integrators while we are below target airspeed as we
// may build up too much while still primarily under
// multicopter control
plane.pitchController.reset_I();
plane.rollController.reset_I();
// give full authority to attitude control
quadplane.attitude_control->set_throttle_mix_max(1.0f);
break;
}
case TRANSITION_TIMER: {
quadplane.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// after airspeed is reached we degrade throttle over the
// transition time, but continue to stabilize
const uint32_t transition_timer_ms = now - transition_low_airspeed_ms;
if (transition_timer_ms > (unsigned)quadplane.transition_time_ms) {
transition_state = TRANSITION_DONE;
in_forced_transition = false;
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
gcs().send_text(MAV_SEVERITY_INFO, "Transition done");
}
float trans_time_ms = MAX((float)quadplane.transition_time_ms.get(),1);
float transition_scale = (trans_time_ms - transition_timer_ms) / trans_time_ms;
float throttle_scaled = last_throttle * transition_scale;
// set zero throttle mix, to give full authority to
// throttle. This ensures that the fixed wing controllers get
// a chance to learn the right integrators during the transition
quadplane.attitude_control->set_throttle_mix_value(0.5*transition_scale);
if (throttle_scaled < 0.01) {
// ensure we don't drop all the way to zero or the motors
// will stop stabilizing
throttle_scaled = 0.01;
}
if (quadplane.tiltrotor.enabled() && !quadplane.tiltrotor.has_vtol_motor() && !quadplane.tiltrotor.has_fw_motor()) {
// All motors tilting, Use a combination of vertical and forward throttle based on curent tilt angle
// scale from all VTOL throttle at airspeed_reached_tilt to all forward throttle at fully forward tilt
// this removes a step change in throttle once assistance is stoped
const float ratio = (constrain_float(quadplane.tiltrotor.current_tilt, airspeed_reached_tilt, quadplane.tiltrotor.get_fully_forward_tilt()) - airspeed_reached_tilt) / (quadplane.tiltrotor.get_fully_forward_tilt() - airspeed_reached_tilt);
const float fw_throttle = MAX(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle),0) * 0.01;
throttle_scaled = constrain_float(throttle_scaled * (1.0-ratio) + fw_throttle * ratio, 0.0, 1.0);
}
quadplane.assisted_flight = true;
quadplane.hold_stabilize(throttle_scaled);
// set desired yaw to current yaw in both desired angle and
// rate request while waiting for transition to
// complete. Navigation should be controlled by fixed wing
// control surfaces at this stage.
// We disable this for vectored yaw tilt rotors as they do need active
// yaw control throughout the transition
if (!quadplane.tiltrotor.is_vectored()) {
quadplane.attitude_control->reset_yaw_target_and_rate();
quadplane.attitude_control->rate_bf_yaw_target(quadplane.ahrs.get_gyro().z);
}
break;
}
case TRANSITION_DONE:
if (!quadplane.tiltrotor.motors_active()) {
quadplane.set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
}
set_last_fw_pitch();
in_forced_transition = false;
return;
}
quadplane.motors_output();
set_last_fw_pitch();
}
void SLT_Transition::VTOL_update()
{
/*
setup the transition state appropriately for next time we go into a non-VTOL mode
*/
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
if (quadplane.throttle_wait && !plane.is_flying()) {
in_forced_transition = false;
transition_state = TRANSITION_DONE;
} else {
/*
setup for airspeed wait for later
*/
transition_state = TRANSITION_AIRSPEED_WAIT;
}
last_throttle = motors->get_throttle();
}
/*
update motor output for quadplane
*/
void QuadPlane::update(void)
{
if (!setup()) {
return;
}
// keep motors interlock state upto date with E-stop
motors->set_interlock(!SRV_Channels::get_emergency_stop());
if ((ahrs_view != NULL) && !is_equal(_last_ahrs_trim_pitch, ahrs_trim_pitch.get())) {
_last_ahrs_trim_pitch = ahrs_trim_pitch.get();
ahrs_view->set_pitch_trim(_last_ahrs_trim_pitch);
}
#if ADVANCED_FAILSAFE == ENABLED
if (plane.afs.should_crash_vehicle() && !plane.afs.terminating_vehicle_via_landing()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
return;
}
#endif
if (motor_test.running) {
motor_test_output();
return;
}
if (SRV_Channels::get_emergency_stop()) {
attitude_control->reset_rate_controller_I_terms();
}
if (!hal.util->get_soft_armed()) {
/*
make sure we don't have any residual control from previous flight stages
*/
if (tailsitter.enabled()) {
// tailsitters only relax I terms, to make ground testing easier
attitude_control->reset_rate_controller_I_terms();
} else {
// otherwise full relax
attitude_control->relax_attitude_controllers();
}
// todo: do you want to set the throttle at this point?
pos_control->relax_z_controller(0);
}
const uint32_t now = AP_HAL::millis();
if (!in_vtol_mode() && !in_vtol_airbrake()) {
// we're in a fixed wing mode, cope with transitions and check
// for assistance needed
if (plane.control_mode == &plane.mode_manual ||
plane.control_mode == &plane.mode_acro ||
plane.control_mode == &plane.mode_training) {
// in manual modes quad motors are always off
if (!tiltrotor.motors_active() && !tailsitter.enabled()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
}
transition->force_transition_complete();
assisted_flight = false;
} else {
transition->update();
}
} else {
assisted_flight = in_vtol_airbrake();
// output to motors
motors_output();
transition->VTOL_update();
}
// disable throttle_wait when throttle rises above 10%
if (throttle_wait &&
(plane.get_throttle_input() > 10 ||
!rc().has_valid_input())) {
throttle_wait = false;
}
tiltrotor.update();
// motors logging
if (motors->armed()) {
const bool motors_active = in_vtol_mode() || assisted_flight;
if (motors_active && (motors->get_spool_state() != AP_Motors::SpoolState::SHUT_DOWN)) {
// log RATE at main loop rate
ahrs_view->Write_Rate(*motors, *attitude_control, *pos_control);
// log CTRL and MOTB at 10 Hz
if (now - last_ctrl_log_ms > 100) {
last_ctrl_log_ms = now;
attitude_control->control_monitor_log();
motors->Log_Write();
}
}
// log QTUN at 25 Hz if motors are active, or have been active in the last quarter second
if ((motors_active || (now - last_motors_active_ms < 250)) && (now - last_qtun_log_ms > 40)) {
last_qtun_log_ms = now;
Log_Write_QControl_Tuning();
}
}
}
/*
see if motors should be shutdown. If they should be then change AP_Motors state to
AP_Motors::DesiredSpoolState::SHUT_DOWN
This is a safety check to prevent accidental motor runs on the
ground, such as if RC fails and QRTL is started
*/
void QuadPlane::update_throttle_suppression(void)
{
// if the motors have been running in the last 2 seconds then
// allow them to run now
if (AP_HAL::millis() - last_motors_active_ms < 2000) {
return;
}
// see if motors are already disabled
if (motors->get_desired_spool_state() < AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) {
return;
}
if (guided_wait_takeoff) {
goto idle_state;
}
/* if the users throttle is above zero then allow motors to run
if the user has unset the "check throttle zero when arming"
then the RC controller has a sprung throttle and we should not
consider non-zero throttle to mean that pilot is commanding
takeoff unless in a manual thottle mode
*/
if (!is_zero(plane.get_throttle_input()) &&
(rc().arming_check_throttle() ||
plane.control_mode->is_vtol_man_throttle() ||
plane.channel_throttle->norm_input_dz() > 0)) {
return;
}
// if in a VTOL manual throttle mode and air_mode is on then allow motors to run
if (plane.control_mode->is_vtol_man_throttle() && air_mode_active()) {
return;
}
// if we are in a fixed wing auto throttle mode and we have
// unsuppressed the throttle then allow motors to run
if (plane.control_mode->does_auto_throttle() && !plane.throttle_suppressed) {
return;
}
// if our vertical velocity is greater than 1m/s then allow motors to run
if (fabsf(inertial_nav.get_velocity_z_up_cms()) > 100) {
return;
}
// if we are more than 5m from home altitude then allow motors to run
if (plane.relative_ground_altitude(plane.g.rangefinder_landing) > 5) {
return;
}
// allow for takeoff
if (plane.control_mode == &plane.mode_auto && is_vtol_takeoff(plane.mission.get_current_nav_cmd().id)) {
return;
}
idle_state:
// motors should be in the spin when armed state to warn user they could become active
set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
motors->set_throttle(0);
last_motors_active_ms = 0;
}
// update estimated throttle required to hover (if necessary)
// called at 100hz
void QuadPlane::update_throttle_hover()
{
if (!available()) {
return;
}
// if not armed or landed exit
if (!motors->armed() || !is_flying_vtol()) {
return;
}
// do not update while climbing or descending
if (!is_zero(pos_control->get_vel_desired_cms().z)) {
return;
}
// do not update if quadplane forward motor is running (wing may be generating lift)
// we use the THR_MIN value to account for petrol motors idling at THR_MIN
if (!tailsitter.enabled() && (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > MAX(0,plane.aparm.throttle_min+10))) {
return;
}
// don't update if Z controller not running
const uint32_t now = AP_HAL::millis();
if (now - last_pidz_active_ms > 20) {
return;
}
// get throttle output
float throttle = motors->get_throttle();
float aspeed;
// calc average throttle if we are in a level hover and low airspeed
if (throttle > 0.0f && fabsf(inertial_nav.get_velocity_z_up_cms()) < 60 &&
labs(ahrs_view->roll_sensor) < 500 && labs(ahrs_view->pitch_sensor) < 500 &&
ahrs.airspeed_estimate(aspeed) && aspeed < plane.aparm.airspeed_min*0.3) {
// Can we set the time constant automatically
motors->update_throttle_hover(0.01f);
#if HAL_GYROFFT_ENABLED
plane.gyro_fft.update_freq_hover(0.01f, motors->get_throttle_out());
#endif
}
}
/*
output motors and do any copter needed
*/
void QuadPlane::motors_output(bool run_rate_controller)
{
/* Delay for ARMING_DELAY_MS after arming before allowing props to spin:
1) for safety (OPTION_DELAY_ARMING)
2) to allow motors to return to vertical (OPTION_DISARMED_TILT)
*/
if ((options & OPTION_DISARMED_TILT) || (options & OPTION_DELAY_ARMING)) {
if (plane.arming.get_delay_arming()) {
// delay motor start after arming
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
return;
}
}
#if ADVANCED_FAILSAFE == ENABLED
if (!hal.util->get_soft_armed() ||
(plane.afs.should_crash_vehicle() && !plane.afs.terminating_vehicle_via_landing()) ||
SRV_Channels::get_emergency_stop()) {
#else
if (!hal.util->get_soft_armed() || SRV_Channels::get_emergency_stop()) {
#endif
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
return;
}
if (esc_calibration && AP_Notify::flags.esc_calibration && plane.control_mode == &plane.mode_qstabilize) {
// output is direct from run_esc_calibration()
return;
}
const uint32_t now = AP_HAL::millis();
if (tailsitter.in_vtol_transition(now) && !assisted_flight) {
/*
don't run the motor outputs while in tailsitter->vtol
transition. That is taken care of by the fixed wing
stabilisation code
*/
return;
}
if (run_rate_controller) {
if (now - last_att_control_ms > 100) {
// relax if have been inactive
relax_attitude_control();
}
attitude_control->rate_controller_run();
last_att_control_ms = now;
}
// see if motors should be shut down
update_throttle_suppression();
motors->output();
// remember when motors were last active for throttle suppression
if (motors->get_throttle() > 0.01f || tiltrotor.motors_active()) {
last_motors_active_ms = now;
}
}
/*
handle a MAVLink DO_VTOL_TRANSITION
*/
bool QuadPlane::handle_do_vtol_transition(enum MAV_VTOL_STATE state) const
{
if (!available()) {
gcs().send_text(MAV_SEVERITY_NOTICE, "VTOL not available");
return false;
}
if (plane.control_mode != &plane.mode_auto) {
gcs().send_text(MAV_SEVERITY_NOTICE, "VTOL transition only in AUTO");
return false;
}
switch (state) {
case MAV_VTOL_STATE_MC:
if (!plane.auto_state.vtol_mode) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Entered VTOL mode");
}
plane.auto_state.vtol_mode = true;
return true;
case MAV_VTOL_STATE_FW:
if (plane.auto_state.vtol_mode) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Exited VTOL mode");
}
plane.auto_state.vtol_mode = false;
return true;
default:
break;
}
gcs().send_text(MAV_SEVERITY_NOTICE, "Invalid VTOL mode");
return false;
}
/*
are we in a VTOL auto state?
*/
bool QuadPlane::in_vtol_auto(void) const
{
if (!available()) {
return false;
}
if (plane.control_mode != &plane.mode_auto) {
return false;
}
if (plane.auto_state.vtol_mode) {
return true;
}
uint16_t id = plane.mission.get_current_nav_cmd().id;
switch (id) {
case MAV_CMD_NAV_VTOL_TAKEOFF:
return true;
case MAV_CMD_NAV_LOITER_UNLIM:
case MAV_CMD_NAV_LOITER_TIME:
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_NAV_LOITER_TO_ALT:
return plane.auto_state.vtol_loiter;
case MAV_CMD_NAV_TAKEOFF:
return is_vtol_takeoff(id);
case MAV_CMD_NAV_VTOL_LAND:
case MAV_CMD_NAV_LAND:
return is_vtol_land(id);
default:
return false;
}
}
/*
are we in a VTOL mode? This is used to decide if we run the
transition handling code or not
note that AIRBRAKE is not considered in_vtol_mode even though the
VTOL motors are running
*/
bool QuadPlane::in_vtol_mode(void) const
{
if (!available()) {
return false;
}
if (in_vtol_land_sequence()) {
return poscontrol.get_state() != QPOS_APPROACH && poscontrol.get_state() != QPOS_AIRBRAKE;
}
if (plane.control_mode->is_vtol_mode()) {
return true;
}
if (plane.control_mode->is_guided_mode()
&& plane.auto_state.vtol_loiter &&
poscontrol.get_state() > QPOS_APPROACH) {
return true;
}
if (plane.control_mode == &plane.mode_guided &&
guided_takeoff) {
return true;
}
if (in_vtol_auto()) {
if (!plane.auto_state.vtol_loiter || poscontrol.get_state() > QPOS_AIRBRAKE) {
return true;
}
}
return false;
}
/*
are we in a VTOL mode that needs position and velocity estimates?
*/
bool QuadPlane::in_vtol_posvel_mode(void) const
{
if (!available()) {
return false;
}
return (plane.control_mode == &plane.mode_qloiter ||
plane.control_mode == &plane.mode_qland ||
plane.control_mode == &plane.mode_qrtl ||
#if QAUTOTUNE_ENABLED
plane.control_mode == &plane.mode_qautotune ||
#endif
(plane.control_mode->is_guided_mode() &&
plane.auto_state.vtol_loiter &&
poscontrol.get_state() > QPOS_APPROACH) ||
in_vtol_auto());
}
/*
update landing positioning offset
*/
void QuadPlane::update_land_positioning(void)
{
if ((options & OPTION_REPOSITION_LANDING) == 0) {
// not enabled
poscontrol.pilot_correction_active = false;
poscontrol.target_vel_cms.zero();
return;
}
const float scale = 1.0 / 4500;
float roll_in = plane.channel_roll->get_control_in() * scale;
float pitch_in = plane.channel_pitch->get_control_in() * scale;
// limit correction speed to accel with stopping time constant of 0.5s
const float speed_max_cms = wp_nav->get_wp_acceleration() * 0.5;
const float dt = plane.scheduler.get_loop_period_s();
poscontrol.target_vel_cms = Vector3f(-pitch_in, roll_in, 0) * speed_max_cms;
poscontrol.target_vel_cms.rotate_xy(ahrs_view->yaw);
// integrate our corrected position
poscontrol.xy_correction += poscontrol.target_vel_cms.xy() * dt * 0.01;
poscontrol.pilot_correction_active = (!is_zero(roll_in) || !is_zero(pitch_in));
if (poscontrol.pilot_correction_active) {
poscontrol.pilot_correction_done = true;
}
}
/*
run (and possibly init) xy controller
*/
void QuadPlane::run_xy_controller(float accel_limit)
{
float accel_cmss = wp_nav->get_wp_acceleration();
if (is_positive(accel_limit)) {
// allow for accel limit override
accel_cmss = MAX(accel_cmss, accel_limit*100);
}
const float speed_cms = wp_nav->get_default_speed_xy();
pos_control->set_max_speed_accel_xy(speed_cms, accel_cmss);
pos_control->set_correction_speed_accel_xy(speed_cms, accel_cmss);
if (!pos_control->is_active_xy()) {
pos_control->init_xy_controller();
}
pos_control->set_lean_angle_max_cd(MIN(4500, MAX(accel_to_angle(accel_limit)*100, aparm.angle_max)));
pos_control->update_xy_controller();
}
/*
initialise QPOS_APPROACH
*/
void QuadPlane::poscontrol_init_approach(void)
{
const float dist = plane.current_loc.get_distance(plane.next_WP_loc);
if ((options & OPTION_DISABLE_APPROACH) != 0) {
// go straight to QPOS_POSITION1
poscontrol.set_state(QPOS_POSITION1);
gcs().send_text(MAV_SEVERITY_INFO,"VTOL Position1 d=%.1f", dist);
} else if (poscontrol.get_state() != QPOS_APPROACH) {
// check if we are close to the destination. We don't want to
// do a full approach when very close
if (dist < transition_threshold()) {
if (tailsitter.enabled() || motors->get_desired_spool_state() == AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) {
gcs().send_text(MAV_SEVERITY_INFO,"VTOL Position1 d=%.1f", dist);
poscontrol.set_state(QPOS_POSITION1);
transition->set_last_fw_pitch();
} else {
gcs().send_text(MAV_SEVERITY_INFO,"VTOL airbrake v=%.1f d=%.0f sd=%.0f h=%.1f",
plane.ahrs.groundspeed(),
dist,
stopping_distance(),
plane.relative_ground_altitude(plane.g.rangefinder_landing));
poscontrol.set_state(QPOS_AIRBRAKE);
}
} else {
gcs().send_text(MAV_SEVERITY_INFO,"VTOL approach d=%.1f", dist);
poscontrol.set_state(QPOS_APPROACH);
}
poscontrol.thrust_loss_start_ms = 0;
}
poscontrol.pilot_correction_done = false;
poscontrol.xy_correction.zero();
poscontrol.slow_descent = false;
}
/*
log the QPOS message
*/
void QuadPlane::log_QPOS(void)
{
AP::logger().WriteStreaming("QPOS", "TimeUS,State,Dist,TSpd,TAcc", "QBfff",
AP_HAL::micros64(),
poscontrol.get_state(),
plane.auto_state.wp_distance,
poscontrol.target_speed,
poscontrol.target_accel);
}
/*
change position control state
*/
void QuadPlane::PosControlState::set_state(enum position_control_state s)
{
const uint32_t now = AP_HAL::millis();
if (state != s) {
auto &qp = plane.quadplane;
pilot_correction_done = false;
// handle resets needed for when the state changes
if (s == QPOS_POSITION1) {
reached_wp_speed = false;
// never do a rate reset, if attitude control is not active it will be automaticaly reset before running, see: last_att_control_ms
// if it is active then the rate control should not be reset at all
qp.attitude_control->reset_yaw_target_and_rate(false);
pos1_speed_limit = plane.ahrs.groundspeed_vector().length();
done_accel_init = false;
} else if (s == QPOS_AIRBRAKE) {
// start with zero integrator on vertical throttle
qp.pos_control->get_accel_z_pid().set_integrator(0);
} else if (s == QPOS_LAND_DESCEND) {
// reset throttle descent control
qp.thr_ctrl_land = false;
} else if (s == QPOS_LAND_FINAL) {
// remember last pos reset to handle GPS glitch in LAND_FINAL
Vector2f rpos;
last_pos_reset_ms = plane.ahrs.getLastPosNorthEastReset(rpos);
qp.landing_detect.land_start_ms = 0;
qp.landing_detect.lower_limit_start_ms = 0;
}
// double log to capture the state change
qp.log_QPOS();
state = s;
qp.log_QPOS();
last_log_ms = now;
}
last_state_change_ms = now;
// we consider setting the state to be equivalent to running to
// prevent code from overriding the state as stale
last_run_ms = now;
}
/*
main landing controller. Used for landing and RTL.
*/
void QuadPlane::vtol_position_controller(void)
{
if (!setup()) {
return;
}
const Location &loc = plane.next_WP_loc;
uint32_t now_ms = AP_HAL::millis();
// distance that we switch to QPOS_POSITION2
const float position2_dist_threshold = 10.0;
// target speed when we reach position2 threshold
const float position2_target_speed = 3.0;
if (hal.util->get_soft_armed()) {
poscontrol.last_run_ms = now_ms;
}
// avoid running the z controller in approach and airbrake if we're not already running it
// and tilt is more than tilt max
bool suppress_z_controller = false;
Vector2f landing_velocity;
if (now_ms - poscontrol.last_velocity_match_ms < 1000) {
landing_velocity = poscontrol.velocity_match;
}
// horizontal position control
switch (poscontrol.get_state()) {
case QPOS_NONE:
poscontrol.set_state(QPOS_POSITION1);
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
case QPOS_APPROACH:
if (in_vtol_mode()) {
// this means we're not running update_transition() and
// thus not doing qassist checking, force POSITION1 mode
// now. We don't expect this to trigger, it is a failsafe
// for a logic error
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position1 nvtol");
poscontrol.set_state(QPOS_POSITION1);
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
FALLTHROUGH;
case QPOS_AIRBRAKE: {
float aspeed;
const Vector2f closing_vel = landing_closing_velocity();
const Vector2f desired_closing_vel = landing_desired_closing_velocity();
const float groundspeed = plane.ahrs.groundspeed();
const float distance = plane.auto_state.wp_distance;
const float closing_speed = closing_vel.length();
const float desired_closing_speed = desired_closing_vel.length();
if (!plane.ahrs.airspeed_estimate(aspeed)) {
aspeed = groundspeed;
}
if (tiltrotor.enabled() && poscontrol.get_state() == QPOS_AIRBRAKE) {
if ((now_ms - last_pidz_active_ms > 2000 && tiltrotor.tilt_over_max_angle()) ||
tiltrotor.current_tilt >= tiltrotor.get_fully_forward_tilt()) {
// use low throttle stabilization when airbraking on a
// tiltrotor. We don't want quite zero throttle as we
// want some drag, but don't want to run the Z
// controller which can result in high throttle on
// motors that are tilted forward, thus increasing
// speed
suppress_z_controller = true;
hold_stabilize(0.01);
}
}
// speed for crossover to POSITION1 controller
const float aspeed_threshold = MAX(plane.aparm.airspeed_min-2, assist_speed);
// run fixed wing navigation
plane.nav_controller->update_waypoint(plane.current_loc, loc);
// use TECS for throttle
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.TECS_controller.get_throttle_demand());
// use TECS for pitch
int32_t commanded_pitch = plane.TECS_controller.get_pitch_demand();
plane.nav_pitch_cd = constrain_int32(commanded_pitch, plane.pitch_limit_min_cd, plane.aparm.pitch_limit_max_cd.get());
if (poscontrol.get_state() == QPOS_AIRBRAKE) {
// don't allow down pitch in airbrake
plane.nav_pitch_cd = MAX(plane.nav_pitch_cd, 0);
}
// use nav controller roll
plane.calc_nav_roll();
const float stop_distance = stopping_distance();
if (!suppress_z_controller && poscontrol.get_state() == QPOS_AIRBRAKE) {
hold_hover(0);
// don't run Z controller again in this loop
suppress_z_controller = true;
}
/*
see if we should start airbraking stage. For non-tailsitters
we can use the VTOL motors as airbrakes by firing them up
before we transition. This gives a smoother transition and
gives us a nice lot of deceleration
*/
if (poscontrol.get_state() == QPOS_APPROACH && distance < stop_distance) {
if (tailsitter.enabled() || motors->get_desired_spool_state() == AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) {
// tailsitters don't use airbrake stage for landing
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position1 v=%.1f d=%.0f sd=%.0f h=%.1f",
groundspeed,
plane.auto_state.wp_distance,
stop_distance,
plane.relative_ground_altitude(plane.g.rangefinder_landing));
poscontrol.set_state(QPOS_POSITION1);
transition->set_last_fw_pitch();
} else {
gcs().send_text(MAV_SEVERITY_INFO,"VTOL airbrake v=%.1f d=%.0f sd=%.0f h=%.1f",
groundspeed,
distance,
stop_distance,
plane.relative_ground_altitude(plane.g.rangefinder_landing));
poscontrol.set_state(QPOS_AIRBRAKE);
}
}
/*
we must switch to POSITION1 if our airspeed drops below the
assist speed. We additionally switch to POSITION1 if we are
too far above our desired velocity profile, or our attitude
has deviated too much
*/
const int32_t attitude_error_threshold_cd = 1000;
// use at least 1s of airbrake time to ensure motors have a chance to
// properly spin up
const uint32_t min_airbrake_ms = 1000;
if (poscontrol.get_state() == QPOS_AIRBRAKE &&
poscontrol.time_since_state_start_ms() > min_airbrake_ms &&
(aspeed < aspeed_threshold ||
fabsf(degrees(closing_vel.angle(desired_closing_vel))) > 60 ||
closing_speed > MAX(desired_closing_speed*1.2, desired_closing_speed+2) ||
labs(plane.ahrs.roll_sensor - plane.nav_roll_cd) > attitude_error_threshold_cd ||
labs(plane.ahrs.pitch_sensor - plane.nav_pitch_cd) > attitude_error_threshold_cd)) {
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position1 v=%.1f d=%.1f h=%.1f dc=%.1f",
(double)groundspeed,
(double)plane.auto_state.wp_distance,
plane.relative_ground_altitude(plane.g.rangefinder_landing),
desired_closing_speed);
poscontrol.set_state(QPOS_POSITION1);
transition->set_last_fw_pitch();
// switch to vfwd for throttle control
vel_forward.integrator = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
vel_forward.last_ms = now_ms;
}
if (!tiltrotor.enabled() && !tailsitter.enabled()) {
/*
cope with fwd motor thrust loss during approach. We detect
this by looking for the fwd throttle saturating. This only
applies to separate lift-thrust vehicles
*/
bool throttle_saturated = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) >= plane.aparm.throttle_max;
if (throttle_saturated &&
motors->get_desired_spool_state() < AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED &&
plane.auto_state.sink_rate > 0.2 && aspeed < aspeed_threshold+4) {
if (poscontrol.thrust_loss_start_ms == 0) {
poscontrol.thrust_loss_start_ms = now_ms;
}
if (now_ms - poscontrol.thrust_loss_start_ms > 5000) {
gcs().send_text(MAV_SEVERITY_INFO,"VTOL pos1 thrust loss as=%.1f at=%.1f",
aspeed, aspeed_threshold);
poscontrol.set_state(QPOS_POSITION1);
transition->set_last_fw_pitch();
}
} else {
poscontrol.thrust_loss_start_ms = 0;
}
// handle loss of forward thrust in approach based on low airspeed detection
if (poscontrol.get_state() == QPOS_APPROACH && aspeed < aspeed_threshold &&
motors->get_desired_spool_state() < AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) {
gcs().send_text(MAV_SEVERITY_INFO,"VTOL pos1 low speed as=%.1f at=%.1f",
aspeed, aspeed_threshold);
poscontrol.set_state(QPOS_POSITION1);
transition->set_last_fw_pitch();
}
}
if (poscontrol.get_state() == QPOS_APPROACH) {
poscontrol_init_approach();
}
break;
}
case QPOS_POSITION1: {
setup_target_position();
if (tailsitter.enabled() && tailsitter.in_vtol_transition(now_ms)) {
break;
}
const Vector2f diff_wp = plane.current_loc.get_distance_NE(loc);
const float distance = diff_wp.length();
const Vector2f rel_groundspeed_vector = landing_closing_velocity();
const float rel_groundspeed_sq = rel_groundspeed_vector.length_squared();
// calculate speed we should be at to reach the position2
// target speed at the position2 distance threshold, assuming
// Q_TRANS_DECEL is correct
const float stopping_speed = safe_sqrt(MAX(0, distance-position2_dist_threshold) * 2 * transition_decel) + position2_target_speed;
float target_speed = stopping_speed;
// maximum configured VTOL speed
const float wp_speed = MAX(1.0, wp_nav->get_default_speed_xy() * 0.01);
const float scaled_wp_speed = get_scaled_wp_speed(degrees(diff_wp.angle()));
// limit target speed to a the pos1 speed limit, which starts out at the initial speed
// but is adjusted if we start putting our nose down. We always allow at least twice
// the WP speed
target_speed = MIN(MAX(poscontrol.pos1_speed_limit, 2*wp_speed), target_speed);
if (poscontrol.reached_wp_speed ||
rel_groundspeed_sq < sq(wp_speed) ||
wp_speed > 1.35*scaled_wp_speed) {
// once we get below the Q_WP_SPEED then we don't want to
// speed up again. At that point we should fly within the
// limits of the configured VTOL controller we also apply
// this limit when we are more than 45 degrees off the
// target in yaw, which is when we start to become
// unstable
target_speed = MIN(target_speed, scaled_wp_speed);
poscontrol.reached_wp_speed = true;
}
// run fixed wing navigation
plane.nav_controller->update_waypoint(plane.current_loc, loc);
Vector2f target_speed_xy_cms;
Vector2f target_accel_cms;
const float target_accel = accel_needed(distance, rel_groundspeed_sq);
if (distance > 0.1) {
Vector2f diff_wp_norm = diff_wp.normalized();
target_speed_xy_cms = diff_wp_norm * target_speed * 100;
target_accel_cms = diff_wp_norm * (-target_accel*100);
}
const float target_speed_ms = target_speed_xy_cms.length() * 0.01;
target_speed_xy_cms += landing_velocity * 100;
poscontrol.target_speed = target_speed_ms;
poscontrol.target_accel = target_accel;
if (!poscontrol.reached_wp_speed &&
rel_groundspeed_sq < sq(target_speed_ms) &&
rel_groundspeed_sq > sq(2*wp_speed) &&
plane.nav_pitch_cd < 0) {
// we have slowed down more than expected, likely due to
// drag from the props and we're starting to put our nose
// down as a result. We want to accept the slowdown and
// re-calculate the target speed profile
poscontrol.pos1_speed_limit = sqrtf(rel_groundspeed_sq);
}
// use input shaping and abide by accel and jerk limits
pos_control->input_vel_accel_xy(target_speed_xy_cms, target_accel_cms);
// run horizontal velocity controller
run_xy_controller(MAX(target_accel, transition_decel)*1.5);
if (!poscontrol.done_accel_init) {
/*
the pos controller init assumes zero accel, we need to
override that so that we can start decelerating more
quickly at the start of POSITION1
*/
poscontrol.done_accel_init = true;
pos_control->set_accel_desired_xy_cmss(target_accel_cms);
}
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll_cd();
plane.nav_pitch_cd = pos_control->get_pitch_cd();
if (transition->set_VTOL_roll_pitch_limit(plane.nav_roll_cd, plane.nav_pitch_cd)) {
pos_control->set_externally_limited_xy();
}
// call attitude controller
disable_yaw_rate_time_constant();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
desired_auto_yaw_rate_cds() + get_weathervane_yaw_rate_cds());
if ((plane.auto_state.wp_distance < position2_dist_threshold) && tiltrotor.tilt_angle_achieved()) {
// if continuous tiltrotor only advance to position 2 once tilts have finished moving
poscontrol.set_state(QPOS_POSITION2);
poscontrol.pilot_correction_done = false;
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position2 started v=%.1f d=%.1f h=%.1f",
(double)ahrs.groundspeed(), (double)plane.auto_state.wp_distance,
plane.relative_ground_altitude(plane.g.rangefinder_landing));
}
break;
}
case QPOS_POSITION2:
case QPOS_LAND_DESCEND: {
setup_target_position();
/*
for final land repositioning and descent we run the position controller
*/
Vector2f zero;
Vector2f vel_cms = poscontrol.target_vel_cms.xy() + landing_velocity*100;
pos_control->input_pos_vel_accel_xy(poscontrol.target_cm.xy(), vel_cms, zero);
// also run fixed wing navigation
plane.nav_controller->update_waypoint(plane.current_loc, loc);
update_land_positioning();
run_xy_controller(transition_decel*1.5);
// nav roll and pitch are controlled by position controller
plane.nav_roll_cd = pos_control->get_roll_cd();
plane.nav_pitch_cd = pos_control->get_pitch_cd();
if (transition->set_VTOL_roll_pitch_limit(plane.nav_roll_cd, plane.nav_pitch_cd)) {
pos_control->set_externally_limited_xy();
}
// call attitude controller
set_pilot_yaw_rate_time_constant();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_pilot_input_yaw_rate_cds() + get_weathervane_yaw_rate_cds());
break;
}
case QPOS_LAND_FINAL:
update_land_positioning();
// relax when close to the ground
if (should_relax()) {
pos_control->relax_velocity_controller_xy();
} else {
Vector2f zero;
Vector2f vel_cms = poscontrol.target_vel_cms.xy() + landing_velocity*100;
Vector2f rpos;
const uint32_t last_reset_ms = plane.ahrs.getLastPosNorthEastReset(rpos);
/* we use velocity control when we may be touching the
ground or if we've had a position reset from AHRS. This
helps us handle a GPS glitch in the final land phase,
and also prevents trying to reposition after touchdown
*/
if (motors->limit.throttle_lower ||
motors->get_throttle() < 0.5*motors->get_throttle_hover() ||
last_reset_ms != poscontrol.last_pos_reset_ms) {
pos_control->input_vel_accel_xy(vel_cms, zero);
} else {
// otherwise use full pos control
pos_control->input_pos_vel_accel_xy(poscontrol.target_cm.xy(), vel_cms, zero);
}
}
run_xy_controller();
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll_cd();
plane.nav_pitch_cd = pos_control->get_pitch_cd();
// call attitude controller
set_pilot_yaw_rate_time_constant();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_pilot_input_yaw_rate_cds() + get_weathervane_yaw_rate_cds());
break;
case QPOS_LAND_COMPLETE:
// nothing to do
break;
}
// now height control
switch (poscontrol.get_state()) {
case QPOS_NONE:
poscontrol.set_state(QPOS_POSITION1);
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
case QPOS_APPROACH:
case QPOS_AIRBRAKE:
// we just want stability from the VTOL controller in these
// phases of landing, so relax the Z controller, unless we are
// providing assistance
if (transition->complete()) {
pos_control->relax_z_controller(0);
}
break;
case QPOS_POSITION1:
if (tailsitter.in_vtol_transition(now_ms)) {
pos_control->relax_z_controller(0);
break;
}
FALLTHROUGH;
case QPOS_POSITION2: {
bool vtol_loiter_auto = false;
if (plane.control_mode == &plane.mode_auto) {
switch (plane.mission.get_current_nav_cmd().id) {
case MAV_CMD_NAV_LOITER_UNLIM:
case MAV_CMD_NAV_LOITER_TIME:
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_NAV_LOITER_TO_ALT:
vtol_loiter_auto = true;
break;
}
}
if (plane.control_mode == &plane.mode_guided || vtol_loiter_auto) {
plane.ahrs.get_location(plane.current_loc);
int32_t target_altitude_cm;
if (!plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABOVE_HOME,target_altitude_cm)) {
break;
}
if (poscontrol.slow_descent &&
plane.prev_WP_loc.get_distance(plane.next_WP_loc) > 50) {
// gradually descend as we approach target
plane.auto_state.wp_proportion = plane.current_loc.line_path_proportion(plane.prev_WP_loc, plane.next_WP_loc);
int32_t prev_alt;
if (plane.prev_WP_loc.get_alt_cm(Location::AltFrame::ABOVE_HOME,prev_alt)) {
target_altitude_cm = linear_interpolate(prev_alt,
target_altitude_cm,
plane.auto_state.wp_proportion,
0, 1);
}
}
#if AP_TERRAIN_AVAILABLE
float terrain_altitude_offset;
if (plane.next_WP_loc.terrain_alt && plane.terrain.height_terrain_difference_home(terrain_altitude_offset, true)) {
// Climb if current terrain is above home, target_altitude_cm is reltive to home
target_altitude_cm += MAX(terrain_altitude_offset*100,0);
}
#endif
float zero = 0;
float target_z = target_altitude_cm;
pos_control->input_pos_vel_accel_z(target_z, zero, 0);
} else if (plane.control_mode == &plane.mode_qrtl) {
Location loc2 = loc;
loc2.change_alt_frame(Location::AltFrame::ABOVE_ORIGIN);
float target_z = loc2.alt;
float zero = 0;
pos_control->input_pos_vel_accel_z(target_z, zero, 0);
} else {
set_climb_rate_cms(0, false);
}
break;
}
case QPOS_LAND_DESCEND:
case QPOS_LAND_FINAL: {
float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing);
if (poscontrol.get_state() == QPOS_LAND_FINAL) {
if ((options & OPTION_DISABLE_GROUND_EFFECT_COMP) == 0) {
ahrs.set_touchdown_expected(true);
}
}
const float descent_rate_cms = landing_descent_rate_cms(height_above_ground);
set_climb_rate_cms(-descent_rate_cms, descent_rate_cms>0);
break;
}
case QPOS_LAND_COMPLETE:
break;
}
/*
run the z controller unless something has already run it or set a target throttle
*/
if (!suppress_z_controller) {
// otherwise run z controller
run_z_controller();
}
if (now_ms - poscontrol.last_log_ms >= 40) {
// log poscontrol at 25Hz
poscontrol.last_log_ms = now_ms;
log_QPOS();
}
}
/*
we want to limit WP speed to a lower speed when more than 20 degrees
off pointing at the destination. quadplanes are often
unstable when flying sideways or backwards
*/
float QuadPlane::get_scaled_wp_speed(float target_bearing_deg) const
{
const float yaw_difference = fabsf(wrap_180(degrees(plane.ahrs.yaw) - target_bearing_deg));
const float wp_speed = wp_nav->get_default_speed_xy() * 0.01;
if (yaw_difference > 20) {
// this gives a factor of 2x reduction in max speed when
// off by 90 degrees, and 3x when off by 180 degrees
const float speed_reduction = linear_interpolate(1, 3,
yaw_difference,
20, 160);
return wp_speed / speed_reduction;
}
return wp_speed;
}
/*
setup the target position based on plane.next_WP_loc
*/
void QuadPlane::setup_target_position(void)
{
const Location &loc = plane.next_WP_loc;
Location origin;
if (!ahrs.get_origin(origin)) {
origin.zero();
}
if (!in_vtol_land_approach() || poscontrol.get_state() > QPOS_APPROACH) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
}
Vector2f diff2d = origin.get_distance_NE(loc);
diff2d += poscontrol.xy_correction;
poscontrol.target_cm.x = diff2d.x * 100;
poscontrol.target_cm.y = diff2d.y * 100;
poscontrol.target_cm.z = plane.next_WP_loc.alt - origin.alt;
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_velocity_z_max_dn(), pilot_velocity_z_max_up, pilot_accel_z);
pos_control->set_correction_speed_accel_z(-get_pilot_velocity_z_max_dn(), pilot_velocity_z_max_up, pilot_accel_z);
}
/*
run takeoff controller to climb vertically
*/
void QuadPlane::takeoff_controller(void)
{
if (!hal.util->get_soft_armed()) {
return;
}
if (plane.control_mode == &plane.mode_guided && guided_takeoff
&& tiltrotor.enabled() && !tiltrotor.fully_up()) {
// waiting for motors to tilt up
return;
}
/*
for takeoff we use the position controller
*/
setup_target_position();
// set position control target and update
Vector2f vel, zero;
if (AP_HAL::millis() - poscontrol.last_velocity_match_ms < 1000) {
vel = poscontrol.velocity_match * 100;
}
/*
support zeroing roll/pitch during early part of takeoff. This
can help particularly with poor GPS velocity data
*/
bool no_navigation = false;
if (takeoff_navalt_min > 0) {
uint32_t now = AP_HAL::millis();
const float alt = plane.current_loc.alt*0.01;
if (takeoff_last_run_ms == 0 ||
now - takeoff_last_run_ms > 1000) {
takeoff_start_alt = alt;
}
takeoff_last_run_ms = now;
if (alt - takeoff_start_alt < takeoff_navalt_min) {
no_navigation = true;
}
}
if (no_navigation) {
plane.nav_roll_cd = 0;
plane.nav_pitch_cd = 0;
pos_control->relax_velocity_controller_xy();
} else {
pos_control->set_accel_desired_xy_cmss(zero);
pos_control->set_vel_desired_xy_cms(vel);
pos_control->input_vel_accel_xy(vel, zero);
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll_cd();
plane.nav_pitch_cd = pos_control->get_pitch_cd();
}
run_xy_controller();
set_pilot_yaw_rate_time_constant();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
get_pilot_input_yaw_rate_cds() + get_weathervane_yaw_rate_cds());
float vel_z = wp_nav->get_default_speed_up();
if (plane.control_mode == &plane.mode_guided && guided_takeoff) {
// for guided takeoff we aim for a specific height with zero
// velocity at that height
Location origin;
if (ahrs.get_origin(origin)) {
// a small margin to ensure we do move to the next takeoff
// stage
const int32_t margin_cm = 5;
float pos_z = margin_cm + plane.next_WP_loc.alt - origin.alt;
vel_z = 0;
pos_control->input_pos_vel_accel_z(pos_z, vel_z, 0);
} else {
set_climb_rate_cms(vel_z, false);
}
} else {
set_climb_rate_cms(vel_z, false);
}
run_z_controller();
}
/*
run waypoint controller between prev_WP_loc and next_WP_loc
*/
void QuadPlane::waypoint_controller(void)
{
setup_target_position();
const Location &loc = plane.next_WP_loc;
const uint32_t now = AP_HAL::millis();
if (!loc.same_latlon_as(last_auto_target) ||
plane.next_WP_loc.alt != last_auto_target.alt ||
now - last_loiter_ms > 500) {
wp_nav->set_wp_destination(poscontrol.target_cm.tofloat());
last_auto_target = loc;
}
last_loiter_ms = now;
/*
this is full copter control of auto flight
*/
// run wpnav controller
wp_nav->update_wpnav();
// nav roll and pitch are controller by waypoint controller
plane.nav_roll_cd = wp_nav->get_roll();
plane.nav_pitch_cd = wp_nav->get_pitch();
if (transition->set_VTOL_roll_pitch_limit(plane.nav_roll_cd, plane.nav_pitch_cd)) {
pos_control->set_externally_limited_xy();
}
// call attitude controller
disable_yaw_rate_time_constant();
attitude_control->input_euler_angle_roll_pitch_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
wp_nav->get_yaw(),
true);
// climb based on altitude error
set_climb_rate_cms(assist_climb_rate_cms(), false);
run_z_controller();
}
/*
handle auto-mode when auto_state.vtol_mode is true
*/
void QuadPlane::control_auto(void)
{
if (!setup()) {
return;
}
if (poscontrol.get_state() > QPOS_APPROACH) {
if (!plane.arming.get_delay_arming()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
}
}
uint16_t id = plane.mission.get_current_nav_cmd().id;
switch (id) {
case MAV_CMD_NAV_VTOL_TAKEOFF:
case MAV_CMD_NAV_TAKEOFF:
if (is_vtol_takeoff(id)) {
takeoff_controller();
}
break;
case MAV_CMD_NAV_VTOL_LAND:
case MAV_CMD_NAV_LAND:
if (is_vtol_land(id)) {
vtol_position_controller();
}
break;
case MAV_CMD_NAV_LOITER_UNLIM:
case MAV_CMD_NAV_LOITER_TIME:
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_NAV_LOITER_TO_ALT: {
const uint32_t now = AP_HAL::millis();
if (now - poscontrol.last_run_ms > 100) {
// ensure that poscontrol is reset
poscontrol.set_state(QPOS_POSITION1);
}
vtol_position_controller();
}
break;
default:
waypoint_controller();
break;
}
}
/*
start a VTOL takeoff
*/
bool QuadPlane::do_vtol_takeoff(const AP_Mission::Mission_Command& cmd)
{
if (!setup()) {
return false;
}
// we always use the current location in XY for takeoff. The altitude defaults
// to relative to current height, but if Q_OPTIONS is set to respect takeoff frame
// then it will use normal frame handling for height
Location loc = cmd.content.location;
loc.lat = 0;
loc.lng = 0;
plane.set_next_WP(loc);
if (options & OPTION_RESPECT_TAKEOFF_FRAME) {
if (plane.current_loc.alt >= plane.next_WP_loc.alt) {
// we are above the takeoff already, no need to do anything
return false;
}
} else {
plane.next_WP_loc.alt = plane.current_loc.alt + cmd.content.location.alt;
}
throttle_wait = false;
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_velocity_z_max_dn(), pilot_velocity_z_max_up, pilot_accel_z);
pos_control->set_correction_speed_accel_z(-get_pilot_velocity_z_max_dn(), pilot_velocity_z_max_up, pilot_accel_z);
// initialise the vertical position controller
pos_control->init_z_controller();
// also update nav_controller for status output
plane.nav_controller->update_waypoint(plane.current_loc, plane.next_WP_loc);
// calculate the time required to complete a takeoff
// this may be conservative and accept extra time due to clamping
// derived from the following latex equations if you want a nicely formatted view
// t_{accel} = \frac{V_max - V_z}{a}
// d_{accel} = V_z*t_{accel} + \frac{1}{2}*a*t_{accel}^2
// d_{remaining} = d_{total} - d_{accel}
// t_{constant} = \frac{d_{remaining}}{V_z}
// t = max(t_{accel}, 0) + max(t_{constant}, 0)
const float d_total = (plane.next_WP_loc.alt - plane.current_loc.alt) * 0.01f;
const float accel_m_s_s = MAX(10, pilot_accel_z) * 0.01f;
const float vel_max = MAX(10, pilot_velocity_z_max_up) * 0.01f;
const float vel_z = inertial_nav.get_velocity_z_up_cms() * 0.01f;
const float t_accel = (vel_max - vel_z) / accel_m_s_s;
const float d_accel = vel_z * t_accel + 0.5f * accel_m_s_s * sq(t_accel);
const float d_remaining = d_total - d_accel;
const float t_constant = d_remaining / vel_max;
const float travel_time = MAX(t_accel, 0) + MAX(t_constant, 0);
// setup the takeoff failure handling code
takeoff_start_time_ms = millis();
takeoff_time_limit_ms = MAX(travel_time * takeoff_failure_scalar * 1000, 5000); // minimum time 5 seconds
return true;
}
/*
start a VTOL landing
*/
bool QuadPlane::do_vtol_land(const AP_Mission::Mission_Command& cmd)
{
if (!setup()) {
return false;
}
plane.set_next_WP(cmd.content.location);
// initially aim for current altitude
plane.next_WP_loc.alt = plane.current_loc.alt;
// initialise the position controller
pos_control->init_xy_controller();
pos_control->init_z_controller();
throttle_wait = false;
landing_detect.lower_limit_start_ms = 0;
landing_detect.land_start_ms = 0;
plane.crash_state.is_crashed = false;
// also update nav_controller for status output
plane.nav_controller->update_waypoint(plane.current_loc, plane.next_WP_loc);
poscontrol_init_approach();
return true;
}
/*
check if a VTOL takeoff has completed
*/
bool QuadPlane::verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd)
{
if (!available()) {
return true;
}
const uint32_t now = millis();
// reset takeoff if we aren't armed
if (!hal.util->get_soft_armed()) {
do_vtol_takeoff(cmd);
return false;
}
if (now - takeoff_start_time_ms < 3000 &&
(options & OPTION_DISABLE_GROUND_EFFECT_COMP) == 0) {
ahrs.set_takeoff_expected(true);
}
// check for failure conditions
if (is_positive(takeoff_failure_scalar) && ((now - takeoff_start_time_ms) > takeoff_time_limit_ms)) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "Failed to complete takeoff within time limit");
plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TAKEOFF);
return false;
}
#if AP_AIRSPEED_ENABLED
if (is_positive(maximum_takeoff_airspeed) && (plane.airspeed.get_airspeed() > maximum_takeoff_airspeed)) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "Failed to complete takeoff, excessive wind");
plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TAKEOFF);
return false;
}
#endif
if (plane.current_loc.alt < plane.next_WP_loc.alt) {
return false;
}
transition->restart();
plane.TECS_controller.set_pitch_max_limit(transition_pitch_max);
// todo: why are you doing this, I want to delete it.
set_alt_target_current();
#if AC_FENCE == ENABLED
plane.fence.auto_enable_fence_after_takeoff();
#endif
if (plane.control_mode == &plane.mode_auto) {
// we reset TECS so that the target height filter is not
// constrained by the climb and sink rates from the initial
// takeoff height.
plane.TECS_controller.reset();
}
// don't crosstrack on next WP
plane.auto_state.next_wp_crosstrack = false;
return true;
}
/*
a landing detector based on change in altitude over a timeout
*/
bool QuadPlane::land_detector(uint32_t timeout_ms)
{
bool might_be_landed = should_relax() && !poscontrol.pilot_correction_active;
if (!might_be_landed) {
landing_detect.land_start_ms = 0;
return false;
}
const uint32_t now = AP_HAL::millis();
float height = inertial_nav.get_position_z_up_cm() * 0.01;
if (landing_detect.land_start_ms == 0) {
landing_detect.land_start_ms = now;
landing_detect.vpos_start_m = height;
}
// we only consider the vehicle landed when the motors have been
// at minimum for timeout_ms+1000 and the vertical position estimate has not
// changed by more than 20cm for timeout_ms
if (fabsf(height - landing_detect.vpos_start_m) > landing_detect.detect_alt_change) {
// height has changed, call off landing detection
landing_detect.land_start_ms = 0;
return false;
}
if ((now - landing_detect.land_start_ms) < timeout_ms ||
(now - landing_detect.lower_limit_start_ms) < (timeout_ms+1000)) {
// not landed yet
return false;
}
return true;
}
/*
check if a landing is complete
*/
bool QuadPlane::check_land_complete(void)
{
if (poscontrol.get_state() != QPOS_LAND_FINAL) {
// only apply to final landing phase
return false;
}
if (land_detector(4000)) {
poscontrol.set_state(QPOS_LAND_COMPLETE);
gcs().send_text(MAV_SEVERITY_INFO,"Land complete");
if (plane.control_mode != &plane.mode_auto ||
!plane.mission.continue_after_land()) {
// disarm on land unless we have MIS_OPTIONS setup to
// continue after land in AUTO
plane.arming.disarm(AP_Arming::Method::LANDED);
}
return true;
}
return false;
}
/*
check if we should switch from QPOS_LAND_DESCEND to QPOS_LAND_FINAL
*/
bool QuadPlane::check_land_final(void)
{
float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing);
// we require 2 readings at 10Hz to be within 5m of each other to
// trigger the switch to land final. This prevents a short term
// glitch at high altitude from triggering land final
const float max_change = 5;
if (height_above_ground < land_final_alt &&
fabsf(height_above_ground - last_land_final_agl) < max_change) {
return true;
}
last_land_final_agl = height_above_ground;
/*
also apply landing detector, in case we have landed in descent
phase. Use a longer threshold
*/
return land_detector(6000);
}
/*
check if a VTOL landing has completed
*/
bool QuadPlane::verify_vtol_land(void)
{
if (!available()) {
return true;
}
if (poscontrol.get_state() == QPOS_POSITION2) {
// see if we should move onto the descend stage of landing
const float descend_dist_threshold = 2.0;
const float descend_speed_threshold = 3.0;
bool reached_position = false;
if (poscontrol.pilot_correction_done) {
reached_position = !poscontrol.pilot_correction_active;
} else {
const float dist = (inertial_nav.get_position_neu_cm().topostype() - poscontrol.target_cm).xy().length() * 0.01;
reached_position = dist < descend_dist_threshold;
}
Vector2f target_vel;
if (AP_HAL::millis() - poscontrol.last_velocity_match_ms < 1000) {
target_vel = poscontrol.velocity_match;
}
Vector3f vel_ned;
UNUSED_RESULT(plane.ahrs.get_velocity_NED(vel_ned));
if (reached_position &&
(vel_ned.xy() - target_vel).length() < descend_speed_threshold) {
poscontrol.set_state(QPOS_LAND_DESCEND);
poscontrol.pilot_correction_done = false;
pos_control->set_lean_angle_max_cd(0);
poscontrol.xy_correction.zero();
#if AC_FENCE == ENABLED
plane.fence.auto_disable_fence_for_landing();
#endif
#if LANDING_GEAR_ENABLED == ENABLED
plane.g2.landing_gear.deploy_for_landing();
#endif
last_land_final_agl = plane.relative_ground_altitude(plane.g.rangefinder_landing);
gcs().send_text(MAV_SEVERITY_INFO,"Land descend started");
if (plane.control_mode == &plane.mode_auto) {
// set height to mission height, so we can use the mission
// WP height for triggering land final if no rangefinder
// available
plane.set_next_WP(plane.mission.get_current_nav_cmd().content.location);
} else {
plane.set_next_WP(plane.next_WP_loc);
plane.next_WP_loc.alt = ahrs.get_home().alt;
}
}
}
// at land_final_alt begin final landing
if (poscontrol.get_state() == QPOS_LAND_DESCEND && check_land_final()) {
poscontrol.set_state(QPOS_LAND_FINAL);
#if AP_ICENGINE_ENABLED
// cut IC engine if enabled
if (land_icengine_cut != 0) {
plane.g2.ice_control.engine_control(0, 0, 0);
}
#endif // AP_ICENGINE_ENABLED
gcs().send_text(MAV_SEVERITY_INFO,"Land final started");
}
if (check_land_complete() && plane.mission.continue_after_land()) {
gcs().send_text(MAV_SEVERITY_INFO,"Mission continue");
return true;
}
return false;
}
// Write a control tuning packet
void QuadPlane::Log_Write_QControl_Tuning()
{
float des_alt_m = 0.0f;
int16_t target_climb_rate_cms = 0;
if (plane.control_mode != &plane.mode_qstabilize) {
des_alt_m = pos_control->get_pos_target_z_cm() * 0.01f;
target_climb_rate_cms = pos_control->get_vel_target_z_cms();
}
struct log_QControl_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_QTUN_MSG),
time_us : AP_HAL::micros64(),
throttle_in : attitude_control->get_throttle_in(),
angle_boost : attitude_control->angle_boost(),
throttle_out : motors->get_throttle(),
throttle_hover : motors->get_throttle_hover(),
desired_alt : des_alt_m,
inav_alt : inertial_nav.get_position_z_up_cm() * 0.01f,
baro_alt : int32_t(plane.barometer.get_altitude() * 100),
target_climb_rate : target_climb_rate_cms,
climb_rate : int16_t(inertial_nav.get_velocity_z_up_cms()),
throttle_mix : attitude_control->get_throttle_mix(),
speed_scaler : tailsitter.log_spd_scaler,
transition_state : transition->get_log_transition_state(),
assist : assisted_flight,
};
plane.logger.WriteBlock(&pkt, sizeof(pkt));
// write multicopter position control message
pos_control->write_log();
}
/*
calculate the forward throttle percentage. The forward throttle can
be used to assist with position hold and with landing approach. It
reduces the need for down pitch which reduces load on the vertical
lift motors.
*/
float QuadPlane::forward_throttle_pct()
{
/*
Unless an RC channel is assigned for manual forward throttle control,
we don't use forward throttle in QHOVER or QSTABILIZE as they are the primary
recovery modes for a quadplane and need to be as simple as
possible. They will drift with the wind.
*/
if (plane.control_mode == &plane.mode_qacro ||
plane.control_mode == &plane.mode_qstabilize ||
plane.control_mode == &plane.mode_qhover) {
if (rc_fwd_thr_ch == nullptr) {
return 0;
} else {
// calculate fwd throttle demand from manual input
float fwd_thr = rc_fwd_thr_ch->percent_input();
// set forward throttle to fwd_thr_max * (manual input + mix): range [0,100]
fwd_thr *= .01f * constrain_float(fwd_thr_max, 0, 100);
return fwd_thr;
}
}
/*
in qautotune mode or modes without a velocity controller
*/
bool use_forward_gain = (vel_forward.gain > 0);
#if QAUTOTUNE_ENABLED
if (plane.control_mode == &plane.mode_qautotune) {
use_forward_gain = false;
}
#endif
if (!use_forward_gain) {
return 0;
}
/*
in modes with a velocity controller
*/
float deltat = (AP_HAL::millis() - vel_forward.last_ms) * 0.001f;
if (deltat > 1 || deltat < 0) {
vel_forward.integrator = 0;
deltat = 0.1;
}
if (deltat < 0.1) {
// run at 10Hz
return vel_forward.last_pct;
}
vel_forward.last_ms = AP_HAL::millis();
// work out the desired speed in forward direction
Vector3f desired_velocity_cms = pos_control->get_vel_desired_cms();
// convert to NED m/s
desired_velocity_cms.z *= -1;
Vector3f vel_ned;
if (!plane.ahrs.get_velocity_NED(vel_ned)) {
// we don't know our velocity? EKF must be pretty sick
vel_forward.last_pct = 0;
vel_forward.integrator = 0;
return 0;
}
// get component of velocity error in fwd body frame direction
Vector3f vel_error_body = ahrs.get_rotation_body_to_ned().transposed() * ((desired_velocity_cms*0.01f) - vel_ned);
float fwd_vel_error = vel_error_body.x;
// scale forward velocity error by maximum airspeed
fwd_vel_error /= MAX(plane.aparm.airspeed_max, 5);
// add in a component from our current pitch demand. This tends to
// move us to zero pitch. Assume that LIM_PITCH would give us the
// WP nav speed.
fwd_vel_error -= (wp_nav->get_default_speed_xy() * 0.01f) * plane.nav_pitch_cd / (float)plane.aparm.pitch_limit_max_cd;
if (should_relax() && vel_ned.length() < 1) {
// we may be landed
fwd_vel_error = 0;
vel_forward.integrator *= 0.95f;
}
// integrator as throttle percentage (-100 to 100)
vel_forward.integrator += fwd_vel_error * deltat * vel_forward.gain * 100;
// inhibit reverse throttle and allow petrol engines with min > 0
int8_t fwd_throttle_min = plane.have_reverse_thrust() ? 0 : plane.aparm.throttle_min;
vel_forward.integrator = constrain_float(vel_forward.integrator, fwd_throttle_min, plane.aparm.throttle_cruise);
if (in_vtol_land_approach()) {
// when we are doing horizontal positioning in a VTOL land
// we always allow the fwd motor to run. Otherwise a bad
// lidar could cause the aircraft not to be able to
// approach the landing point when landing below the takeoff point
vel_forward.last_pct = vel_forward.integrator;
} else if ((in_vtol_land_final() && motors->limit.throttle_lower) ||
(plane.g.rangefinder_landing && (plane.rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::Status::OutOfRangeLow))) {
// we're in the settling phase of landing or using a rangefinder that is out of range low, disable fwd motor
vel_forward.last_pct = 0;
vel_forward.integrator = 0;
} else {
// If we are below alt_cutoff then scale down the effect until
// it turns off at alt_cutoff and decay the integrator
float alt_cutoff = MAX(0,vel_forward_alt_cutoff);
float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing);
vel_forward.last_pct = linear_interpolate(0, vel_forward.integrator,
height_above_ground, alt_cutoff, alt_cutoff+2);
}
if (is_zero(vel_forward.last_pct)) {
// if the percent is 0 then decay the integrator
vel_forward.integrator *= 0.95f;
}
return vel_forward.last_pct;
}
/*
get weathervaning yaw rate in cd/s
*/
float QuadPlane::get_weathervane_yaw_rate_cds(void)
{
/*
we only do weathervaning in modes where we are doing VTOL
position control.
*/
if (!in_vtol_mode() ||
!transition->allow_weathervane() ||
!motors->armed() || (motors->get_desired_spool_state() != AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) ||
plane.control_mode == &plane.mode_qstabilize ||
#if QAUTOTUNE_ENABLED
plane.control_mode == &plane.mode_qautotune ||
#endif
plane.control_mode == &plane.mode_qhover ||
should_relax()
) {
// Ensure the weathervane controller is reset to prevent weathervaning from happening outside of the timer
weathervane->reset();
return 0.0;
}
const bool is_takeoff = in_vtol_auto() && is_vtol_takeoff(plane.mission.get_current_nav_cmd().id);
float wv_output;
if (weathervane->get_yaw_out(wv_output,
plane.channel_rudder->get_control_in(),
plane.relative_ground_altitude(plane.g.rangefinder_landing),
pos_control->get_roll_cd(),
pos_control->get_pitch_cd(),
is_takeoff,
in_vtol_land_sequence())) {
return constrain_float(wv_output * (1/45.0), -100.0, 100.0) * command_model_pilot.get_rate() * 0.5;
}
return 0.0;
}
/*
start guided mode control
*/
void QuadPlane::guided_start(void)
{
guided_takeoff = false;
setup_target_position();
int32_t from_alt;
int32_t to_alt;
poscontrol_init_approach();
if (plane.current_loc.get_alt_cm(Location::AltFrame::ABSOLUTE,from_alt) && plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE,to_alt)) {
poscontrol.slow_descent = from_alt > to_alt;
} else {
// default back to old method
poscontrol.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt);
}
}
/*
update guided mode control
*/
void QuadPlane::guided_update(void)
{
if (plane.control_mode == &plane.mode_guided && guided_takeoff && plane.current_loc.alt < plane.next_WP_loc.alt) {
throttle_wait = false;
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
takeoff_controller();
} else {
if (guided_takeoff) {
poscontrol.set_state(QPOS_POSITION2);
}
guided_takeoff = false;
// run VTOL position controller
vtol_position_controller();
}
}
void QuadPlane::afs_terminate(void)
{
if (available()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
}
}
/*
return true if we should do guided mode loitering using VTOL motors
*/
bool QuadPlane::guided_mode_enabled(void)
{
if (!available()) {
return false;
}
// only use quadplane guided when in AUTO or GUIDED mode
if (plane.control_mode != &plane.mode_guided && plane.control_mode != &plane.mode_auto) {
return false;
}
if (plane.control_mode == &plane.mode_auto &&
plane.mission.get_current_nav_cmd().id == MAV_CMD_NAV_LOITER_TURNS) {
// loiter turns is a fixed wing only operation
return false;
}
return guided_mode != 0;
}
/*
set altitude target to current altitude
*/
void QuadPlane::set_alt_target_current(void)
{
pos_control->set_pos_target_z_cm(inertial_nav.get_position_z_up_cm());
}
// user initiated takeoff for guided mode
bool QuadPlane::do_user_takeoff(float takeoff_altitude)
{
if (plane.control_mode != &plane.mode_guided) {
gcs().send_text(MAV_SEVERITY_INFO, "User Takeoff only in GUIDED mode");
return false;
}
if (!hal.util->get_soft_armed()) {
gcs().send_text(MAV_SEVERITY_INFO, "Must be armed for takeoff");
return false;
}
if (is_flying()) {
gcs().send_text(MAV_SEVERITY_INFO, "Already flying - no takeoff");
return false;
}
plane.auto_state.vtol_loiter = true;
plane.prev_WP_loc = plane.current_loc;
plane.next_WP_loc = plane.current_loc;
plane.next_WP_loc.alt += takeoff_altitude*100;
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
guided_start();
guided_takeoff = true;
guided_wait_takeoff = false;
if ((options & OPTION_DISABLE_GROUND_EFFECT_COMP) == 0) {
ahrs.set_takeoff_expected(true);
}
return true;
}
// return true if the wp_nav controller is being updated
bool QuadPlane::using_wp_nav(void) const
{
if (plane.control_mode == &plane.mode_qloiter || plane.control_mode == &plane.mode_qland) {
return true;
}
return false;
}
/*
return mav_type for heartbeat
*/
MAV_TYPE QuadPlane::get_mav_type(void) const
{
if (mav_type.get() == 0) {
return MAV_TYPE_FIXED_WING;
}
return MAV_TYPE(mav_type.get());
}
/*
return true if current mission item is a vtol takeoff
*/
bool QuadPlane::is_vtol_takeoff(uint16_t id) const
{
if (id == MAV_CMD_NAV_VTOL_TAKEOFF) {
return true;
}
if (id == MAV_CMD_NAV_TAKEOFF && available() && (options & OPTION_ALLOW_FW_TAKEOFF) == 0) {
// treat fixed wing takeoff as VTOL takeoff
return true;
}
return false;
}
/*
return true if current mission item is a vtol land
*/
bool QuadPlane::is_vtol_land(uint16_t id) const
{
if (id == MAV_CMD_NAV_VTOL_LAND) {
if (options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH) {
return plane.vtol_approach_s.approach_stage == Plane::Landing_ApproachStage::VTOL_LANDING;
} else {
return true;
}
}
if (id == MAV_CMD_NAV_LAND && available() && (options & OPTION_ALLOW_FW_LAND) == 0) {
// treat fixed wing land as VTOL land
return true;
}
return false;
}
/*
return true if we are in a transition to fwd flight from hover
*/
bool QuadPlane::in_transition(void) const
{
return available() && transition->active();
}
/*
calculate current stopping distance for a quadplane in fixed wing flight
*/
float QuadPlane::stopping_distance(float ground_speed_squared) const
{
// use v^2/(2*accel). This is only quite approximate as the drag
// varies with pitch, but it gives something for the user to
// control the transition distance in a reasonable way
return ground_speed_squared / (2 * transition_decel);
}
/*
calculate acceleration needed to stop in the given distance given current speed
*/
float QuadPlane::accel_needed(float stop_distance, float ground_speed_squared) const
{
return ground_speed_squared / (2 * MAX(1,stop_distance));
}
/*
calculate current stopping distance for a quadplane in fixed wing flight
*/
float QuadPlane::stopping_distance(void)
{
return stopping_distance(plane.ahrs.groundspeed_vector().length_squared());
}
/*
distance below which we don't do approach, based on stopping
distance for cruise speed
*/
float QuadPlane::transition_threshold(void)
{
// 1.5 times stopping distance for cruise speed
return 1.5 * stopping_distance(sq(plane.aparm.airspeed_cruise_cm*0.01));
}
#define LAND_CHECK_ANGLE_ERROR_DEG 30.0f // maximum angle error to be considered landing
#define LAND_CHECK_LARGE_ANGLE_CD 1500.0f // maximum angle target to be considered landing
#define LAND_CHECK_ACCEL_MOVING 3.0f // maximum acceleration after subtracting gravity
void QuadPlane::update_throttle_mix(void)
{
// update filtered acceleration
Vector3f accel_ef = ahrs.get_accel_ef_blended();
accel_ef.z += GRAVITY_MSS;
throttle_mix_accel_ef_filter.apply(accel_ef, plane.scheduler.get_loop_period_s());
// transition will directly manage the mix
if (!transition->allow_update_throttle_mix()) {
return;
}
// if disarmed or landed prioritise throttle
if (!motors->armed()) {
attitude_control->set_throttle_mix_min();
return;
}
if (plane.control_mode->is_vtol_man_throttle()) {
// manual throttle
if (!is_positive(plane.get_throttle_input()) && !air_mode_active()) {
attitude_control->set_throttle_mix_min();
} else {
attitude_control->set_throttle_mix_man();
}
} else {
// autopilot controlled throttle
// check for aggressive flight requests - requested roll or pitch angle below 15 degrees
const Vector3f angle_target = attitude_control->get_att_target_euler_cd();
bool large_angle_request = angle_target.xy().length() > LAND_CHECK_LARGE_ANGLE_CD;
// check for large external disturbance - angle error over 30 degrees
const float angle_error = attitude_control->get_att_error_angle_deg();
bool large_angle_error = (angle_error > LAND_CHECK_ANGLE_ERROR_DEG);
// check for large acceleration - falling or high turbulence
bool accel_moving = (throttle_mix_accel_ef_filter.get().length() > LAND_CHECK_ACCEL_MOVING);
// check for requested descent
bool descent_not_demanded = pos_control->get_vel_desired_cms().z >= 0.0f;
bool use_mix_max = large_angle_request || large_angle_error || accel_moving || descent_not_demanded;
/*
special case for auto landing, we want a high degree of
attitude control until LAND_FINAL
*/
if (in_vtol_land_sequence()) {
use_mix_max = !in_vtol_land_final();
}
if (use_mix_max) {
attitude_control->set_throttle_mix_max(1.0);
} else {
attitude_control->set_throttle_mix_min();
}
}
}
/*
see if we are in the approach phase of a VTOL landing
*/
bool QuadPlane::in_vtol_land_approach(void) const
{
if (plane.control_mode == &plane.mode_qrtl &&
poscontrol.get_state() <= QPOS_POSITION2) {
return true;
}
if (in_vtol_auto()) {
if (is_vtol_land(plane.mission.get_current_nav_cmd().id) &&
(poscontrol.get_state() == QPOS_APPROACH ||
poscontrol.get_state() == QPOS_AIRBRAKE ||
poscontrol.get_state() == QPOS_POSITION1 ||
poscontrol.get_state() == QPOS_POSITION2)) {
return true;
}
}
return false;
}
/*
see if we are in the descent phase of a VTOL landing
*/
bool QuadPlane::in_vtol_land_descent(void) const
{
if (plane.control_mode == &plane.mode_qrtl &&
(poscontrol.get_state() == QPOS_LAND_DESCEND || poscontrol.get_state() == QPOS_LAND_FINAL)) {
return true;
}
if (in_vtol_auto() && is_vtol_land(plane.mission.get_current_nav_cmd().id) &&
(poscontrol.get_state() == QPOS_LAND_DESCEND || poscontrol.get_state() == QPOS_LAND_FINAL)) {
return true;
}
return false;
}
/*
see if we are in the final phase of a VTOL landing
*/
bool QuadPlane::in_vtol_land_final(void) const
{
return in_vtol_land_descent() && poscontrol.get_state() == QPOS_LAND_FINAL;
}
/*
see if we are in any of the phases of a VTOL landing
*/
bool QuadPlane::in_vtol_land_sequence(void) const
{
return plane.control_mode == &plane.mode_qrtl || in_vtol_land_approach() || in_vtol_land_descent() || in_vtol_land_final();
}
/*
see if we are in the VTOL position control phase of a landing
*/
bool QuadPlane::in_vtol_land_poscontrol(void) const
{
if (in_vtol_auto() && is_vtol_land(plane.mission.get_current_nav_cmd().id) &&
poscontrol.get_state() >= QPOS_POSITION1) {
return true;
}
return false;
}
/*
see if we are in the airbrake phase of a VTOL landing
*/
bool QuadPlane::in_vtol_airbrake(void) const
{
if (plane.control_mode == &plane.mode_qrtl &&
poscontrol.get_state() == QPOS_AIRBRAKE) {
return true;
}
if (plane.control_mode == &plane.mode_auto &&
is_vtol_land(plane.mission.get_current_nav_cmd().id) &&
poscontrol.get_state() == QPOS_AIRBRAKE) {
return true;
}
return false;
}
// return true if we should show VTOL view
bool QuadPlane::show_vtol_view() const
{
return available() && transition->show_vtol_view();
}
// return true if we should show VTOL view
bool SLT_Transition::show_vtol_view() const
{
return quadplane.in_vtol_mode();
}
// return the PILOT_VELZ_MAX_DN value if non zero, otherwise returns the PILOT_VELZ_MAX value.
uint16_t QuadPlane::get_pilot_velocity_z_max_dn() const
{
if (pilot_velocity_z_max_dn == 0) {
return abs(pilot_velocity_z_max_up);
}
return abs(pilot_velocity_z_max_dn);
}
/*
should we use the fixed wing attitude controllers for roll/pitch control
*/
bool QuadPlane::use_fw_attitude_controllers(void) const
{
if (available() &&
motors->armed() &&
motors->get_desired_spool_state() >= AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED &&
in_vtol_mode() &&
!tailsitter.enabled() &&
poscontrol.get_state() != QPOS_AIRBRAKE) {
// we want the desired rates for fixed wing slaved to the
// multicopter rates
return false;
}
return true;
}
/*
calculate our closing velocity vector on the landing point, taking
into account target velocity
*/
Vector2f QuadPlane::landing_closing_velocity()
{
Vector2f landing_velocity;
if (AP_HAL::millis() - poscontrol.last_velocity_match_ms < 1000) {
landing_velocity = poscontrol.velocity_match;
}
return ahrs.groundspeed_vector() - landing_velocity;
}
/*
calculate our desired closing velocity vector on the landing point.
*/
Vector2f QuadPlane::landing_desired_closing_velocity()
{
if (poscontrol.get_state() >= QPOS_LAND_DESCEND) {
return Vector2f(0,0);
}
const Vector2f diff_wp = plane.current_loc.get_distance_NE(plane.next_WP_loc);
float dist = diff_wp.length();
if (dist < 1) {
return Vector2f(0,0);
}
// base target speed based on sqrt of distance
float target_speed = safe_sqrt(2*transition_decel*dist);
Vector2f target_speed_xy = diff_wp.normalized() * target_speed;
return target_speed_xy;
}
/*
get target airspeed for landing, for use by TECS
*/
float QuadPlane::get_land_airspeed(void)
{
if (poscontrol.get_state() == QPOS_APPROACH ||
plane.control_mode == &plane.mode_rtl) {
float land_airspeed = plane.TECS_controller.get_land_airspeed();
if (!is_positive(land_airspeed)) {
land_airspeed = plane.aparm.airspeed_cruise_cm * 0.01;
}
float cruise_airspeed = plane.aparm.airspeed_cruise_cm * 0.01;
float time_to_landing = plane.auto_state.wp_distance / MAX(land_airspeed, 5);
/*
slow down to landing approach speed as we get closer to landing
*/
land_airspeed = linear_interpolate(land_airspeed, cruise_airspeed,
time_to_landing,
20, 60);
return land_airspeed;
}
Vector2f vel = landing_desired_closing_velocity();
const float eas2tas = plane.ahrs.get_EAS2TAS();
const Vector3f wind = plane.ahrs.wind_estimate();
vel.x -= wind.x;
vel.y -= wind.y;
vel /= eas2tas;
return vel.length();
}
void QuadPlane::set_desired_spool_state(AP_Motors::DesiredSpoolState state)
{
if (motors->get_desired_spool_state() != state) {
if (state == AP_Motors::DesiredSpoolState::SHUT_DOWN) {
// also request zero throttle, so we avoid the slow ramp down
motors->set_roll(0);
motors->set_pitch(0);
motors->set_yaw(0);
motors->set_throttle(0);
}
motors->set_desired_spool_state(state);
}
}
bool QuadPlane::air_mode_active() const
{
if ((air_mode == AirMode::ON) || ((air_mode == AirMode::ASSISTED_FLIGHT_ONLY) && assisted_flight)) {
return true;
}
return false;
}
/*
return scaling factor for tilting rotors in forward flight throttle
we want to scale back tilt angle for roll/pitch by throttle in forward flight
*/
float QuadPlane::FW_vector_throttle_scaling()
{
const float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * 0.01;
// scale relative to a fixed 0.5 mid throttle so that changes in TRIM_THROTTLE in missions don't change
// the scaling of tilt
const float mid_throttle = 0.5;
return mid_throttle / constrain_float(throttle, 0.1, 1.0);
}
QuadPlane *QuadPlane::_singleton = nullptr;
bool SLT_Transition::set_FW_roll_limit(int32_t& roll_limit_cd)
{
if (quadplane.assisted_flight && (transition_state == TRANSITION_AIRSPEED_WAIT || transition_state == TRANSITION_TIMER) &&
(quadplane.options & QuadPlane::OPTION_LEVEL_TRANSITION)) {
// the user wants transitions to be kept level to within LEVEL_ROLL_LIMIT
roll_limit_cd = MIN(roll_limit_cd, plane.g.level_roll_limit*100);
return true;
}
return false;
}
bool SLT_Transition::allow_update_throttle_mix() const
{
// transition is directly managing throttle mix in these cases
return !(quadplane.assisted_flight && (transition_state == TRANSITION_AIRSPEED_WAIT || transition_state == TRANSITION_TIMER));
}
bool SLT_Transition::active() const
{
return quadplane.assisted_flight && ((transition_state == TRANSITION_AIRSPEED_WAIT) || (transition_state == TRANSITION_TIMER));
}
/*
limit VTOL roll/pitch in POSITION1, POSITION2 and waypoint controller. This serves three roles:
1) an expanding envelope limit on pitch to prevent sudden pitch at the start of a back transition
2) limiting roll and pitch down to the Q_ANGLE_MAX, as the accel limits may push us beyond that for pitch up.
This is needed as the position controller doesn't have separate limits for pitch and roll
3) preventing us pitching up a lot when our airspeed may be low
enough that the real airspeed may be negative, which would result
in reversed control surfaces
*/
bool SLT_Transition::set_VTOL_roll_pitch_limit(int32_t& roll_cd, int32_t& pitch_cd)
{
bool ret = false;
const int16_t angle_max = quadplane.aparm.angle_max;
/*
we always limit roll to Q_ANGLE_MAX
*/
int32_t new_roll_cd = constrain_int32(roll_cd, -angle_max, angle_max);
if (new_roll_cd != roll_cd) {
roll_cd = new_roll_cd;
ret = true;
}
/*
always limit pitch down to Q_ANGLE_MAX. We need to do this as
the position controller accel limits may exceed this limit
*/
if (pitch_cd < -angle_max) {
pitch_cd = -angle_max;
ret = true;
}
/*
prevent trying to fly backwards (negative airspeed) at high
pitch angles, which can result in a high degree of instability
in SLT aircraft. This can happen with a tailwind in a back
transition, where the position controller (which is unaware of
airspeed) demands high pitch to hit the desired landing point
*/
float airspeed;
if (pitch_cd > angle_max &&
plane.ahrs.airspeed_estimate(airspeed) && airspeed < 0.5 * plane.aparm.airspeed_min) {
const float max_limit_cd = linear_interpolate(angle_max, 4500,
airspeed,
0, 0.5 * plane.aparm.airspeed_min);
if (pitch_cd > max_limit_cd) {
pitch_cd = max_limit_cd;
ret = true;
}
}
if (quadplane.back_trans_pitch_limit_ms <= 0) {
// time based pitch envelope disabled
return ret;
}
const uint32_t limit_time_ms = quadplane.back_trans_pitch_limit_ms;
const uint32_t dt = AP_HAL::millis() - last_fw_mode_ms;
if (last_fw_mode_ms == 0 || dt > limit_time_ms) {
// we are beyond the time limit, don't apply envelope
last_fw_mode_ms = 0;
return ret;
}
// we limit pitch during initial transition
const float max_limit_cd = linear_interpolate(MAX(last_fw_nav_pitch_cd,0), MIN(angle_max,plane.aparm.pitch_limit_max_cd),
dt,
0, limit_time_ms);
if (pitch_cd > max_limit_cd) {
pitch_cd = max_limit_cd;
return true;
}
/*
limit the pitch down with an expanding envelope. This
prevents the velocity controller demanding nose down during
the initial slowdown if the target velocity curve is higher
than the actual velocity curve (for a high drag
aircraft). Nose down will cause a lot of downforce on the
wings which will draw a lot of current and also cause the
aircraft to lose altitude rapidly.pitch limit varies also with speed
to prevent inability to progress to position if moving from a loiter
to landing
*/
const float min_limit_cd = linear_interpolate(MIN(last_fw_nav_pitch_cd,0), MAX(-angle_max,plane.aparm.pitch_limit_min_cd),
dt,
0, limit_time_ms);
if (plane.nav_pitch_cd < min_limit_cd) {
plane.nav_pitch_cd = min_limit_cd;
return true;
}
return ret;
}
/*
remember last fixed wing pitch for pitch envelope in back transition
*/
void SLT_Transition::set_last_fw_pitch()
{
last_fw_mode_ms = AP_HAL::millis();
last_fw_nav_pitch_cd = plane.nav_pitch_cd;
}
void SLT_Transition::force_transition_complete() {
transition_state = TRANSITION_DONE;
in_forced_transition = false;
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
set_last_fw_pitch();
}
MAV_VTOL_STATE SLT_Transition::get_mav_vtol_state() const
{
if (quadplane.in_vtol_mode()) {
QuadPlane::position_control_state state = quadplane.poscontrol.get_state();
if ((state == QuadPlane::position_control_state::QPOS_AIRBRAKE) || (state == QuadPlane::position_control_state::QPOS_POSITION1)) {
return MAV_VTOL_STATE_TRANSITION_TO_MC;
}
return MAV_VTOL_STATE_MC;
}
switch (transition_state) {
case TRANSITION_AIRSPEED_WAIT:
case TRANSITION_TIMER:
// we enter this state during assisted flight, not just
// during a forward transition.
return MAV_VTOL_STATE_TRANSITION_TO_FW;
case TRANSITION_DONE:
return MAV_VTOL_STATE_FW;
}
return MAV_VTOL_STATE_UNDEFINED;
}
/*
see if we are in a VTOL takeoff
*/
bool QuadPlane::in_vtol_takeoff(void) const
{
if (in_vtol_auto() && is_vtol_takeoff(plane.mission.get_current_nav_cmd().id)) {
return true;
}
return false;
}
// called when we change mode (for any mode, not just Q modes)
void QuadPlane::mode_enter(void)
{
if (available()) {
pos_control->set_lean_angle_max_cd(0);
}
poscontrol.xy_correction.zero();
poscontrol.velocity_match.zero();
poscontrol.last_velocity_match_ms = 0;
poscontrol.set_state(QuadPlane::QPOS_NONE);
// clear guided takeoff wait on any mode change, but remember the
// state for special behaviour
guided_wait_takeoff_on_mode_enter = guided_wait_takeoff;
guided_wait_takeoff = false;
}
// Set attitude control yaw rate time constant to pilot input command model value
void QuadPlane::set_pilot_yaw_rate_time_constant()
{
attitude_control->set_yaw_rate_tc(command_model_pilot.get_rate_tc());
}
// Disable attitude control yaw rate time constant
void QuadPlane::disable_yaw_rate_time_constant()
{
attitude_control->set_yaw_rate_tc(0.0);
}
#endif // HAL_QUADPLANE_ENABLED