ardupilot/ArduPlane/mode_loiter.cpp

162 lines
6.1 KiB
C++

#include "mode.h"
#include "Plane.h"
bool ModeLoiter::_enter()
{
plane.do_loiter_at_location();
plane.setup_terrain_target_alt(plane.next_WP_loc);
// make sure the local target altitude is the same as the nav target used for loiter nav
// this allows us to do FBWB style stick control
/*IGNORE_RETURN(plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, plane.target_altitude.amsl_cm));*/
if (plane.stick_mixing_enabled() && (plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL))) {
plane.set_target_altitude_current();
}
plane.loiter_angle_reset();
return true;
}
void ModeLoiter::update()
{
plane.calc_nav_roll();
if (plane.stick_mixing_enabled() && plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL)) {
plane.update_fbwb_speed_height();
} else {
plane.calc_nav_pitch();
plane.calc_throttle();
}
#if AP_SCRIPTING_ENABLED
if (plane.nav_scripting_active()) {
// while a trick is running we reset altitude
plane.set_target_altitude_current();
plane.next_WP_loc.set_alt_cm(plane.target_altitude.amsl_cm, Location::AltFrame::ABSOLUTE);
}
#endif
}
bool ModeLoiter::isHeadingLinedUp(const Location loiterCenterLoc, const Location targetLoc)
{
// Return true if current heading is aligned to vector to targetLoc.
// Tolerance is initially 10 degrees and grows at 10 degrees for each loiter circle completed.
// Corrected radius for altitude
const float loiter_radius = plane.nav_controller->loiter_radius(fabsf(plane.loiter.radius));
if (!is_positive(loiter_radius)) {
// Zero is invalid, protect against divide by zero for destination inside loiter radius case
return true;
}
// Calculate relative position of the vehicle relative to loiter center projected onto the closest point of the loiter circle
// This removes error due to radial position as the nav controller attempts to track the circle
const Vector2f projected_pos = loiterCenterLoc.get_distance_NE(plane.current_loc).normalized() * loiter_radius;
// Target position relative to loiter center
const Vector2f target_pos = loiterCenterLoc.get_distance_NE(targetLoc);
// Distance between loiter circle and target
const float target_dist = target_pos.length();
if (!is_positive(target_dist)) {
// Target is coincident with loiter center, no heading will be closer than any other
return true;
}
// Target bearing in centi-degrees
int32_t target_bearing_cd;
if (target_dist >= loiter_radius) {
// Destination outside loiter radius, heading will always line up with destination
// Vector from between projected vehicle position and target postion
const Vector2f pos_to_target = target_pos - projected_pos;
target_bearing_cd = degrees(pos_to_target.angle()) * 100;
} else {
// Destination is inside loiter, heading will never line up with destination
// Advance turn point by the angle of a segment with chord "a"
// This results in turning earlier as the target point approaches the center
// If target is on radius angle of 0 and angle of 60 deg if target is on center
const float a = loiter_radius - target_dist;
const float segment_angle = 2.0 * asinf(a / (2.0 * loiter_radius));
// Pick the intersection point that will be hit first for the current loiter direction, add 90 deg to get the tangent angle
target_bearing_cd = degrees(wrap_PI(target_pos.angle() + (M_PI_2 - segment_angle) * plane.loiter.direction)) * 100;
}
// Ideal heading in centi-degrees, +- 90 to get tangent to loiter circle at closest point
const int32_t current_heading_cd = degrees(wrap_PI(projected_pos.angle() + M_PI_2 * plane.loiter.direction)) * 100;
return isHeadingLinedUp_cd(target_bearing_cd, current_heading_cd);
}
bool ModeLoiter::isHeadingLinedUp_cd(const int32_t bearing_cd) {
// get current heading.
const int32_t heading_cd = (wrap_360(degrees(ahrs.groundspeed_vector().angle())))*100;
return isHeadingLinedUp_cd(bearing_cd, heading_cd);
}
bool ModeLoiter::isHeadingLinedUp_cd(const int32_t bearing_cd, const int32_t heading_cd)
{
// Return true if current heading is aligned to bearing_cd.
// Tolerance is initially 10 degrees and grows at 10 degrees for each loiter circle completed.
const int32_t heading_err_cd = wrap_180_cd(bearing_cd - heading_cd);
/*
Check to see if the the plane is heading toward the land
waypoint. We use 20 degrees (+/-10 deg) of margin so that
we can handle 200 degrees/second of yaw.
After every full circle, extend acceptance criteria to ensure
aircraft will not loop forever in case high winds are forcing
it beyond 200 deg/sec when passing the desired exit course
*/
// Use integer division to get discrete steps
const int32_t expanded_acceptance = 1000 * (labs(plane.loiter.sum_cd) / 36000);
if (labs(heading_err_cd) <= 1000 + expanded_acceptance) {
// Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp
// 0 to xtrack from center of waypoint, 1 to xtrack from tangent exit location
if (plane.next_WP_loc.loiter_xtrack) {
plane.next_WP_loc = plane.current_loc;
}
return true;
}
return false;
}
void ModeLoiter::navigate()
{
if (plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL)) {
// update the WP alt from the global target adjusted by update_fbwb_speed_height
plane.next_WP_loc.set_alt_cm(plane.target_altitude.amsl_cm, Location::AltFrame::ABSOLUTE);
}
#if AP_SCRIPTING_ENABLED
if (plane.nav_scripting_active()) {
// don't try to navigate while running trick
return;
}
#endif
// Zero indicates to use WP_LOITER_RAD
plane.update_loiter(0);
}
void ModeLoiter::update_target_altitude()
{
if (plane.stick_mixing_enabled() && (plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL))) {
return;
}
Mode::update_target_altitude();
}