ardupilot/ArduCopter/motors_tri.pde
Pat Hickey a19afd926a APM_RC & ArduCopter: Change interface to SetFastOutputChannels to use _BV
* Every use of MSK_CH_n changed to _BV(CH_n)
* Easier to read, and will allow CH_n to be parameterized without needing
  a separate macro expansion for the MSK value.
2012-01-09 21:57:01 -08:00

127 lines
3.0 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == TRI_FRAME
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(CH_1) | _BV(CH_2) | _BV(CH_4) );
#endif
}
static void output_motors_armed()
{
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left front
motor_out[CH_2] = g.rc_3.radio_out + roll_out + pitch_out;
//right front
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out;
// rear
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out;
//motor_out[CH_4] += (float)(abs(g.rc_4.control_in)) * .013;
// Tridge's stability patch
if (motor_out[CH_1] > out_max) {
motor_out[CH_2] -= (motor_out[CH_1] - out_max) >> 1;
motor_out[CH_4] -= (motor_out[CH_1] - out_max) >> 1;
motor_out[CH_1] = out_max;
}
if (motor_out[CH_2] > out_max) {
motor_out[CH_1] -= (motor_out[CH_2] - out_max) >> 1;
motor_out[CH_4] -= (motor_out[CH_2] - out_max) >> 1;
motor_out[CH_2] = out_max;
}
if (motor_out[CH_4] > out_max) {
motor_out[CH_1] -= (motor_out[CH_4] - out_max) >> 1;
motor_out[CH_2] -= (motor_out[CH_4] - out_max) >> 1;
motor_out[CH_4] = out_max;
}
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
}
#endif
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
#if INSTANT_PWM == 1
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
#endif
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
}
static void output_motor_test()
{
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
if(g.rc_1.control_in > 3000){ // right
motor_out[CH_1] += 100;
}
if(g.rc_1.control_in < -3000){ // left
motor_out[CH_2] += 100;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[CH_4] += 100;
}
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
}
#endif