ardupilot/ArduCopter/GCS_Mavlink.pde

2133 lines
65 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// this costs us 51 bytes, but means that low priority
// messages don't block the CPU
static mavlink_statustext_t pending_status;
// true when we have received at least 1 MAVLink packet
static bool mavlink_active;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false
// prototype this for use inside the GCS class
static void gcs_send_text_fmt(const prog_char_t *fmt, ...);
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
switch (control_mode) {
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (motors.armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_QUADROTOR,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
#if AP_LIMITS == ENABLED
static NOINLINE void send_limits_status(mavlink_channel_t chan)
{
limits_send_mavlink_status(chan);
}
#endif
static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops)
{
uint32_t control_sensors_present = 0;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// first what sensors/controllers we have
control_sensors_present |= (1<<0); // 3D gyro present
control_sensors_present |= (1<<1); // 3D accelerometer present
if (g.compass_enabled) {
control_sensors_present |= (1<<2); // compass present
}
control_sensors_present |= (1<<3); // absolute pressure sensor present
if (g_gps != NULL && g_gps->status() == GPS::GPS_OK) {
control_sensors_present |= (1<<5); // GPS present
}
control_sensors_present |= (1<<10); // 3D angular rate control
control_sensors_present |= (1<<11); // attitude stabilisation
control_sensors_present |= (1<<12); // yaw position
control_sensors_present |= (1<<13); // altitude control
control_sensors_present |= (1<<14); // X/Y position control
control_sensors_present |= (1<<15); // motor control
// now what sensors/controllers are enabled
// first the sensors
control_sensors_enabled = control_sensors_present & 0x1FF;
// now the controllers
control_sensors_enabled = control_sensors_present & 0x1FF;
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
control_sensors_enabled |= (1<<13); // altitude control
control_sensors_enabled |= (1<<15); // motor control
switch (control_mode) {
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
case POSITION:
control_sensors_enabled |= (1<<12); // yaw position
control_sensors_enabled |= (1<<14); // X/Y position control
break;
}
// at the moment all sensors/controllers are assumed healthy
control_sensors_health = control_sensors_present;
if (!compass.healthy) {
control_sensors_health &= ~(1<<2); // compass
}
if (!compass.use_for_yaw()) {
control_sensors_enabled &= ~(1<<2); // compass
}
uint16_t battery_current = -1;
uint8_t battery_remaining = -1;
if (current_total1 != 0 && g.pack_capacity != 0) {
battery_remaining = (100.0 * (g.pack_capacity - current_total1) / g.pack_capacity);
}
if (current_total1 != 0) {
battery_current = current_amps1 * 100;
}
if (g.battery_monitoring == 3) {
/*setting a out-of-range value.
* It informs to external devices that
* it cannot be calculated properly just by voltage*/
battery_remaining = 150;
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
0, // CPU Load not supported in AC yet
battery_voltage1 * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
static void NOINLINE send_meminfo(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD != HAL_BOARD_AVR_SITL
extern unsigned __brkval;
mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory());
#endif
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (g_gps->status() == GPS::GPS_OK) {
fix_time = g_gps->last_fix_time;
} else {
fix_time = millis();
}
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
g_gps->altitude * 10, // millimeters above sea level
(current_loc.alt - home.alt) * 10, // millimeters above ground
g_gps->velocity_north() * 100, // X speed cm/s (+ve North)
g_gps->velocity_east() * 100, // Y speed cm/s (+ve East)
g_gps->velocity_down() * -100, // Z speed cm/s (+ve up)
g_gps->ground_course); // course in 1/100 degree
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
nav_roll / 1.0e2,
nav_pitch / 1.0e2,
wp_bearing / 1.0e2,
wp_bearing / 1.0e2,
wp_distance / 1.0e2,
altitude_error / 1.0e2,
0,
crosstrack_error); // was 0
}
static void NOINLINE send_ahrs(mavlink_channel_t chan)
{
Vector3f omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
1,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
sitl.simstate_send(chan);
}
#endif
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
board_voltage(),
hal.i2c->lockup_count());
}
static void NOINLINE send_gps_raw(mavlink_channel_t chan)
{
uint8_t fix = g_gps->status();
if (fix == GPS::GPS_OK) {
fix = 3;
}
mavlink_msg_gps_raw_int_send(
chan,
g_gps->last_fix_time*(uint64_t)1000,
fix,
g_gps->latitude, // in 1E7 degrees
g_gps->longitude, // in 1E7 degrees
g_gps->altitude * 10, // in mm
g_gps->hdop,
65535,
g_gps->ground_speed, // cm/s
g_gps->ground_course, // 1/100 degrees,
g_gps->num_sats);
}
static void NOINLINE send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with HIL maintainers
#if FRAME_CONFIG == HELI_FRAME
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
g.rc_3.radio_out,
g.rc_4.servo_out,
0,
0,
0,
0,
receiver_rssi);
#else
#if X_PLANE == ENABLED
/* update by JLN for X-Plane HIL */
if(motors.armed() && motors.auto_armed()) {
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
10000 * g.rc_3.norm_output(),
g.rc_4.servo_out,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
receiver_rssi);
}else{
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
0,
0,
-10000,
0,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
receiver_rssi);
}
#else
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
g.rc_3.radio_out,
g.rc_4.servo_out,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
receiver_rssi);
#endif
#endif
}
static void NOINLINE send_radio_in(mavlink_channel_t chan)
{
mavlink_msg_rc_channels_raw_send(
chan,
millis(),
0, // port
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in,
receiver_rssi);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
motors.motor_out[AP_MOTORS_MOT_1],
motors.motor_out[AP_MOTORS_MOT_2],
motors.motor_out[AP_MOTORS_MOT_3],
motors.motor_out[AP_MOTORS_MOT_4],
motors.motor_out[AP_MOTORS_MOT_5],
motors.motor_out[AP_MOTORS_MOT_6],
motors.motor_out[AP_MOTORS_MOT_7],
motors.motor_out[AP_MOTORS_MOT_8]);
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
(float)g_gps->ground_speed / 100.0,
(float)g_gps->ground_speed / 100.0,
(ahrs.yaw_sensor / 100) % 360,
g.rc_3.servo_out/10,
current_loc.alt / 100.0,
climb_rate / 100.0);
}
static void NOINLINE send_raw_imu1(mavlink_channel_t chan)
{
Vector3f accel = ins.get_accel();
Vector3f gyro = ins.get_gyro();
mavlink_msg_raw_imu_send(
chan,
micros(),
accel.x * 1000.0 / gravity,
accel.y * 1000.0 / gravity,
accel.z * 1000.0 / gravity,
gyro.x * 1000.0,
gyro.y * 1000.0,
gyro.z * 1000.0,
compass.mag_x,
compass.mag_y,
compass.mag_z);
}
static void NOINLINE send_raw_imu2(mavlink_channel_t chan)
{
mavlink_msg_scaled_pressure_send(
chan,
millis(),
(float)barometer.get_pressure()/100.0,
(float)(barometer.get_pressure() - barometer.get_ground_pressure())/100.0,
(int)(barometer.get_temperature()*10));
}
static void NOINLINE send_raw_imu3(mavlink_channel_t chan)
{
Vector3f mag_offsets = compass.get_offsets();
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f gyro_offsets = ins.get_gyro_offsets();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
barometer.get_raw_pressure(),
barometer.get_raw_temp(),
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z,
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
}
static void NOINLINE send_gps_status(mavlink_channel_t chan)
{
mavlink_msg_gps_status_send(
chan,
g_gps->num_sats,
NULL,
NULL,
NULL,
NULL,
NULL);
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_mission_current_send(
chan,
(uint16_t)g.command_index);
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_msg_statustext_send(
chan,
pending_status.severity,
pending_status.text);
}
// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
if (tnow > (uint8_t)g.telem_delay) {
return false;
}
#if USB_MUX_PIN > 0
if (chan == MAVLINK_COMM_0 && ap_system.usb_connected) {
// this is an APM2 with USB telemetry
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry
return true;
#else
if (chan == MAVLINK_COMM_0) {
// we're on the USB port
return false;
}
// don't send telemetry yet
return true;
#endif
}
// try to send a message, return false if it won't fit in the serial tx buffer
static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;
if (telemetry_delayed(chan)) {
return false;
}
switch(id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan, packet_drops);
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo(chan);
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
send_gps_raw(chan);
break;
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(chan);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu1(chan);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_raw_imu2(chan);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_raw_imu3(chan);
break;
case MSG_GPS_STATUS:
CHECK_PAYLOAD_SIZE(GPS_STATUS);
send_gps_status(chan);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_param_send();
} else if (gcs3.initialised) {
gcs3.queued_param_send();
}
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_waypoint_send();
} else {
gcs3.queued_waypoint_send();
}
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
#if AP_LIMITS == ENABLED
case MSG_LIMITS_STATUS:
CHECK_PAYLOAD_SIZE(LIMITS_STATUS);
send_limits_status(chan);
break;
#endif
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(chan);
break;
case MSG_SIMSTATE:
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
#endif
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
}
return true;
}
#define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED
static struct mavlink_queue {
enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES];
uint8_t next_deferred_message;
uint8_t num_deferred_messages;
} mavlink_queue[2];
// send a message using mavlink
static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
uint8_t i, nextid;
struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan];
// see if we can send the deferred messages, if any
while (q->num_deferred_messages != 0) {
if (!mavlink_try_send_message(chan,
q->deferred_messages[q->next_deferred_message],
packet_drops)) {
break;
}
q->next_deferred_message++;
if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) {
q->next_deferred_message = 0;
}
q->num_deferred_messages--;
}
if (id == MSG_RETRY_DEFERRED) {
return;
}
// this message id might already be deferred
for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) {
if (q->deferred_messages[nextid] == id) {
// its already deferred, discard
return;
}
nextid++;
if (nextid == MAX_DEFERRED_MESSAGES) {
nextid = 0;
}
}
if (q->num_deferred_messages != 0 ||
!mavlink_try_send_message(chan, id, packet_drops)) {
// can't send it now, so defer it
if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) {
// the defer buffer is full, discard
return;
}
nextid = q->next_deferred_message + q->num_deferred_messages;
if (nextid >= MAX_DEFERRED_MESSAGES) {
nextid -= MAX_DEFERRED_MESSAGES;
}
q->deferred_messages[nextid] = id;
q->num_deferred_messages++;
}
}
void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str)
{
if (telemetry_delayed(chan)) {
return;
}
if (severity == SEVERITY_LOW) {
// send via the deferred queuing system
pending_status.severity = (uint8_t)severity;
strncpy((char *)pending_status.text, str, sizeof(pending_status.text));
mavlink_send_message(chan, MSG_STATUSTEXT, 0);
} else {
// send immediately
mavlink_msg_statustext_send(
chan,
severity,
str);
}
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRateRawSensors, 0),
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRateExtendedStatus, 0),
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRateRCChannels, 0),
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRateRawController, 0),
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRatePosition, 0),
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRateExtra1, 0),
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRateExtra2, 0),
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRateExtra3, 0),
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRateParams, 0),
AP_GROUPEND
};
GCS_MAVLINK::GCS_MAVLINK() :
packet_drops(0),
waypoint_send_timeout(1000), // 1 second
waypoint_receive_timeout(1000) // 1 second
{
}
void
GCS_MAVLINK::init(AP_HAL::UARTDriver* port)
{
GCS_Class::init(port);
if (port == hal.uartA) {
mavlink_comm_0_port = port;
chan = MAVLINK_COMM_0;
}else{
mavlink_comm_1_port = port;
chan = MAVLINK_COMM_1;
}
_queued_parameter = NULL;
}
void
GCS_MAVLINK::update(void)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
status.packet_rx_drop_count = 0;
// process received bytes
while(comm_get_available(chan))
{
uint8_t c = comm_receive_ch(chan);
#if CLI_ENABLED == ENABLED
/* allow CLI to be started by hitting enter 3 times, if no
* heartbeat packets have been received */
if (mavlink_active == false) {
if (c == '\n' || c == '\r') {
crlf_count++;
} else {
crlf_count = 0;
}
if (crlf_count == 3) {
run_cli(_port);
}
}
#endif
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
// we exclude radio packets to make it possible to use the
// CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO) {
mavlink_active = true;
}
handleMessage(&msg);
}
}
// Update packet drops counter
packet_drops += status.packet_rx_drop_count;
if (!waypoint_receiving && !waypoint_sending) {
return;
}
uint32_t tnow = millis();
if (waypoint_receiving &&
waypoint_request_i <= (unsigned)g.command_total &&
tnow > waypoint_timelast_request + 500 + (stream_slowdown*20)) {
waypoint_timelast_request = tnow;
send_message(MSG_NEXT_WAYPOINT);
}
// stop waypoint sending if timeout
if (waypoint_sending && (tnow - waypoint_timelast_send) > waypoint_send_timeout) {
waypoint_sending = false;
}
// stop waypoint receiving if timeout
if (waypoint_receiving && (tnow - waypoint_timelast_receive) > waypoint_receive_timeout) {
waypoint_receiving = false;
}
}
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
AP_Int16 *stream_rates = &streamRateRawSensors;
uint8_t rate = (uint8_t)stream_rates[stream_num].get();
if (rate == 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
if (waypoint_receiving || waypoint_sending) {
// don't interfere with mission transfer
return;
}
if (_queued_parameter != NULL) {
if (streamRateParams.get() <= 0) {
streamRateParams.set(50);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
// don't send anything else at the same time as parameters
return;
}
if (in_mavlink_delay) {
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
//cliSerial->printf("mav1 %d\n", (int)streamRateRawSensors.get());
}
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_LIMITS_STATUS);
if (last_gps_satellites != g_gps->num_sats) {
// this message is mostly a huge waste of bandwidth,
// except it is the only message that gives the number
// of visible satellites. So only send it when that
// changes.
send_message(MSG_GPS_STATUS);
last_gps_satellites = g_gps->num_sats;
}
}
if (stream_trigger(STREAM_POSITION)) {
send_message(MSG_LOCATION);
}
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
//cliSerial->printf("mav4 %d\n", (int)streamRateRawController.get());
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
//cliSerial->printf("mav5 %d\n", (int)streamRateRCChannels.get());
}
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
//cliSerial->printf("mav6 %d\n", (int)streamRateExtra1.get());
}
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
//cliSerial->printf("mav7 %d\n", (int)streamRateExtra2.get());
}
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
}
}
void
GCS_MAVLINK::send_message(enum ap_message id)
{
mavlink_send_message(chan,id, packet_drops);
}
void
GCS_MAVLINK::send_text_P(gcs_severity severity, const prog_char_t *str)
{
mavlink_statustext_t m;
uint8_t i;
for (i=0; i<sizeof(m.text); i++) {
m.text[i] = pgm_read_byte((const prog_char *)(str++));
}
if (i < sizeof(m.text)) m.text[i] = 0;
mavlink_send_text(chan, severity, (const char *)m.text);
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
struct Location tell_command = {}; // command for telemetry
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: //66
{
// decode
mavlink_request_data_stream_t packet;
mavlink_msg_request_data_stream_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
int16_t freq = 0; // packet frequency
if (packet.start_stop == 0)
freq = 0; // stop sending
else if (packet.start_stop == 1)
freq = packet.req_message_rate; // start sending
else
break;
switch(packet.req_stream_id) {
case MAV_DATA_STREAM_ALL:
streamRateRawSensors = freq;
streamRateExtendedStatus = freq;
streamRateRCChannels = freq;
streamRateRawController = freq;
streamRatePosition = freq;
streamRateExtra1 = freq;
streamRateExtra2 = freq;
//streamRateExtra3.set_and_save(freq); // We just do set and save on the last as it takes care of the whole group.
streamRateExtra3 = freq; // Don't save!!
break;
case MAV_DATA_STREAM_RAW_SENSORS:
streamRateRawSensors = freq; // We do not set and save this one so that if HIL is shut down incorrectly
// we will not continue to broadcast raw sensor data at 50Hz.
break;
case MAV_DATA_STREAM_EXTENDED_STATUS:
//streamRateExtendedStatus.set_and_save(freq);
streamRateExtendedStatus = freq;
break;
case MAV_DATA_STREAM_RC_CHANNELS:
streamRateRCChannels = freq;
break;
case MAV_DATA_STREAM_RAW_CONTROLLER:
streamRateRawController = freq;
break;
//case MAV_DATA_STREAM_RAW_SENSOR_FUSION:
// streamRateRawSensorFusion.set_and_save(freq);
// break;
case MAV_DATA_STREAM_POSITION:
streamRatePosition = freq;
break;
case MAV_DATA_STREAM_EXTRA1:
streamRateExtra1 = freq;
break;
case MAV_DATA_STREAM_EXTRA2:
streamRateExtra2 = freq;
break;
case MAV_DATA_STREAM_EXTRA3:
streamRateExtra3 = freq;
break;
default:
break;
}
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_NAV_LOITER_UNLIM:
set_mode(LOITER);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_LAND:
set_mode(LAND);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
if (packet.param1 == 1 ||
packet.param2 == 1 ||
packet.param3 == 1) {
ins.init_accel(flash_leds);
}
if (packet.param4 == 1) {
trim_radio();
}
if (packet.param5 == 1) {
// this blocks
AP_InertialSensor_UserInteractStream interact(hal.console);
ins.calibrate_accel(flash_leds, &interact);
}
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) {
if (packet.param1 == 1.0f) {
init_arm_motors();
result = MAV_RESULT_ACCEPTED;
} else if (packet.param1 == 0.0f) {
init_disarm_motors();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_UNSUPPORTED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (packet.param1 == 1) {
reboot_apm();
result = MAV_RESULT_ACCEPTED;
}
break;
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
mavlink_msg_command_ack_send(
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_SET_MODE: //11
{
// decode
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(msg, &packet);
if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) {
// we ignore base_mode as there is no sane way to map
// from that bitmap to a APM flight mode. We rely on
// custom_mode instead.
break;
}
switch (packet.custom_mode) {
case STABILIZE:
case ACRO:
case ALT_HOLD:
case AUTO:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case POSITION:
case LAND:
case OF_LOITER:
set_mode(packet.custom_mode);
break;
}
break;
}
/*case MAVLINK_MSG_ID_SET_NAV_MODE:
* {
* // decode
* mavlink_set_nav_mode_t packet;
* mavlink_msg_set_nav_mode_decode(msg, &packet);
* // To set some flight modes we must first receive a "set nav mode" message and then a "set mode" message
* mav_nav = packet.nav_mode;
* break;
* }
*/
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: //43
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint request list"));
// decode
mavlink_mission_request_list_t packet;
mavlink_msg_mission_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// Start sending waypoints
mavlink_msg_mission_count_send(
chan,msg->sysid,
msg->compid,
g.command_total); // includes home
waypoint_timelast_send = millis();
waypoint_sending = true;
waypoint_receiving = false;
waypoint_dest_sysid = msg->sysid;
waypoint_dest_compid = msg->compid;
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST: // 40
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint request"));
// Check if sending waypiont
//if (!waypoint_sending) break;
// 5/10/11 - We are trying out relaxing the requirement that we be in waypoint sending mode to respond to a waypoint request. DEW
// decode
mavlink_mission_request_t packet;
mavlink_msg_mission_request_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// send waypoint
tell_command = get_cmd_with_index(packet.seq);
// set frame of waypoint
uint8_t frame;
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // reference frame
} else {
frame = MAV_FRAME_GLOBAL; // reference frame
}
float param1 = 0, param2 = 0, param3 = 0, param4 = 0;
// time that the mav should loiter in milliseconds
uint8_t current = 0; // 1 (true), 0 (false)
if (packet.seq == (uint16_t)g.command_index)
current = 1;
uint8_t autocontinue = 1; // 1 (true), 0 (false)
float x = 0, y = 0, z = 0;
if (tell_command.id < MAV_CMD_NAV_LAST) {
// command needs scaling
x = tell_command.lat/1.0e7; // local (x), global (latitude)
y = tell_command.lng/1.0e7; // local (y), global (longitude)
// ACM is processing alt inside each command. so we save and load raw values. - this is diffrent to APM
z = tell_command.alt/1.0e2; // local (z), global/relative (altitude)
}
// Switch to map APM command fields into MAVLink command fields
switch (tell_command.id) {
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_CONDITION_CHANGE_ALT:
case MAV_CMD_DO_SET_HOME:
param1 = tell_command.p1;
break;
case MAV_CMD_NAV_ROI:
param1 = tell_command.p1; // MAV_ROI (aka roi mode) is held in wp's parameter but we actually do nothing with it because we only support pointing at a specific location provided by x,y and z parameters
break;
case MAV_CMD_CONDITION_YAW:
param3 = tell_command.p1;
param1 = tell_command.alt;
param2 = tell_command.lat;
param4 = tell_command.lng;
break;
case MAV_CMD_NAV_TAKEOFF:
param1 = 0;
break;
case MAV_CMD_NAV_LOITER_TIME:
param1 = tell_command.p1; // ACM loiter time is in 1 second increments
break;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
param1 = tell_command.lat;
break;
case MAV_CMD_DO_JUMP:
param2 = tell_command.lat;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
param4 = tell_command.lng;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
param3 = tell_command.lat;
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
case MAV_CMD_NAV_WAYPOINT:
param1 = tell_command.p1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
}
mavlink_msg_mission_item_send(chan,msg->sysid,
msg->compid,
packet.seq,
frame,
tell_command.id,
current,
autocontinue,
param1,
param2,
param3,
param4,
x,
y,
z);
// update last waypoint comm stamp
waypoint_timelast_send = millis();
break;
}
case MAVLINK_MSG_ID_MISSION_ACK: //47
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint ack"));
// decode
mavlink_mission_ack_t packet;
mavlink_msg_mission_ack_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// turn off waypoint send
waypoint_sending = false;
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: // 21
{
// gcs_send_text_P(SEVERITY_LOW,PSTR("param request list"));
// decode
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// Start sending parameters - next call to ::update will kick the first one out
_queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index = 0;
_queued_parameter_count = _count_parameters();
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
// decode
mavlink_param_request_read_t packet;
mavlink_msg_param_request_read_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
enum ap_var_type p_type;
AP_Param *vp;
if (packet.param_index != -1) {
vp = AP_Param::find_by_index(packet.param_index, &p_type);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter index %d"), packet.param_index);
break;
}
} else {
vp = AP_Param::find(packet.param_id, &p_type);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter %.16s"), packet.param_id);
break;
}
}
char param_name[AP_MAX_NAME_SIZE];
vp->copy_name(param_name, sizeof(param_name), true);
float value = vp->cast_to_float(p_type);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(p_type),
_count_parameters(),
packet.param_index);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // 45
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint clear all"));
// decode
mavlink_mission_clear_all_t packet;
mavlink_msg_mission_clear_all_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
// clear all waypoints
uint8_t type = 0; // ok (0), error(1)
g.command_total.set_and_save(1);
// send acknowledgement 3 times to makes sure it is received
for (int16_t i=0; i<3; i++)
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, type);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // 41
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint set current"));
// decode
mavlink_mission_set_current_t packet;
mavlink_msg_mission_set_current_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// set current command
change_command(packet.seq);
mavlink_msg_mission_current_send(chan, g.command_index);
break;
}
case MAVLINK_MSG_ID_MISSION_COUNT: // 44
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint count"));
// decode
mavlink_mission_count_t packet;
mavlink_msg_mission_count_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.count > MAX_WAYPOINTS) {
packet.count = MAX_WAYPOINTS;
}
g.command_total.set_and_save(packet.count);
waypoint_timelast_receive = millis();
waypoint_receiving = true;
waypoint_sending = false;
waypoint_request_i = 0;
waypoint_timelast_request = 0;
break;
}
#ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS
case MAVLINK_MSG_ID_SET_MAG_OFFSETS:
{
mavlink_set_mag_offsets_t packet;
mavlink_msg_set_mag_offsets_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z));
break;
}
#endif
// XXX receive a WP from GCS and store in EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM: //39
{
// decode
mavlink_mission_item_t packet;
mavlink_msg_mission_item_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// defaults
tell_command.id = packet.command;
/*
* switch (packet.frame){
*
* case MAV_FRAME_MISSION:
* case MAV_FRAME_GLOBAL:
* {
* tell_command.lat = 1.0e7*packet.x; // in as DD converted to * t7
* tell_command.lng = 1.0e7*packet.y; // in as DD converted to * t7
* tell_command.alt = packet.z*1.0e2; // in as m converted to cm
* tell_command.options = 0; // absolute altitude
* break;
* }
*
* case MAV_FRAME_LOCAL: // local (relative to home position)
* {
* tell_command.lat = 1.0e7*ToDeg(packet.x/
* (radius_of_earth*cos(ToRad(home.lat/1.0e7)))) + home.lat;
* tell_command.lng = 1.0e7*ToDeg(packet.y/radius_of_earth) + home.lng;
* tell_command.alt = packet.z*1.0e2;
* tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
* break;
* }
* //case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
* default:
* {
* tell_command.lat = 1.0e7 * packet.x; // in as DD converted to * t7
* tell_command.lng = 1.0e7 * packet.y; // in as DD converted to * t7
* tell_command.alt = packet.z * 1.0e2;
* tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
* break;
* }
* }
*/
// we only are supporting Abs position, relative Alt
tell_command.lat = 1.0e7 * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7 * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2;
tell_command.options = 1; // store altitude relative to home alt!! Always!!
switch (tell_command.id) { // Switch to map APM command fields into MAVLink command fields
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_DO_SET_HOME:
tell_command.p1 = packet.param1;
break;
case MAV_CMD_NAV_ROI:
tell_command.p1 = packet.param1; // MAV_ROI (aka roi mode) is held in wp's parameter but we actually do nothing with it because we only support pointing at a specific location provided by x,y and z parameters
break;
case MAV_CMD_CONDITION_YAW:
tell_command.p1 = packet.param3;
tell_command.alt = packet.param1;
tell_command.lat = packet.param2;
tell_command.lng = packet.param4;
break;
case MAV_CMD_NAV_TAKEOFF:
tell_command.p1 = 0;
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
tell_command.p1 = packet.param1 * 100;
break;
case MAV_CMD_NAV_LOITER_TIME:
tell_command.p1 = packet.param1; // APM loiter time is in ten second increments
break;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
tell_command.lat = packet.param1;
break;
case MAV_CMD_DO_JUMP:
tell_command.lat = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
tell_command.lng = packet.param4;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
tell_command.lat = packet.param3;
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_NAV_WAYPOINT:
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
}
if(packet.current == 2) { //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission
guided_WP = tell_command;
// add home alt if needed
if (guided_WP.options & MASK_OPTIONS_RELATIVE_ALT) {
guided_WP.alt += home.alt;
}
set_mode(GUIDED);
// make any new wp uploaded instant (in case we are already in Guided mode)
set_next_WP(&guided_WP);
// verify we recevied the command
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else if(packet.current == 3) { //current = 3 is a flag to tell us this is a alt change only
// add home alt if needed
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
tell_command.alt += home.alt;
}
set_new_altitude(tell_command.alt);
// verify we recevied the command
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else {
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) break;
//cliSerial->printf("req: %d, seq: %d, total: %d\n", waypoint_request_i,packet.seq, g.command_total.get());
// check if this is the requested waypoint
if (packet.seq != waypoint_request_i)
break;
if(packet.seq != 0)
set_cmd_with_index(tell_command, packet.seq);
// update waypoint receiving state machine
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_request_i++;
if (waypoint_request_i == (uint16_t)g.command_total) {
uint8_t type = 0; // ok (0), error(1)
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
type);
send_text_P(SEVERITY_LOW,PSTR("flight plan received"));
waypoint_receiving = false;
// XXX ignores waypoint radius for individual waypoints, can
// only set WP_RADIUS parameter
}
}
break;
}
case MAVLINK_MSG_ID_PARAM_SET: // 23
{
AP_Param *vp;
enum ap_var_type var_type;
// decode
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// set parameter
char key[AP_MAX_NAME_SIZE+1];
strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE);
key[AP_MAX_NAME_SIZE] = 0;
// find the requested parameter
vp = AP_Param::find(key, &var_type);
if ((NULL != vp) && // exists
!isnan(packet.param_value) && // not nan
!isinf(packet.param_value)) { // not inf
// add a small amount before casting parameter values
// from float to integer to avoid truncating to the
// next lower integer value.
float rounding_addition = 0.01;
// handle variables with standard type IDs
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(packet.param_value);
} else if (var_type == AP_PARAM_INT32) {
#if LOGGING_ENABLED == ENABLED
Log_Write_Data(1, ((AP_Int32 *)vp)->get());
#endif
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -2147483648.0, 2147483647.0);
((AP_Int32 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT16) {
#if LOGGING_ENABLED == ENABLED
Log_Write_Data(3, (int32_t)((AP_Int16 *)vp)->get());
#endif
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -32768, 32767);
((AP_Int16 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT8) {
#if LOGGING_ENABLED == ENABLED
Log_Write_Data(4, (int32_t)((AP_Int8 *)vp)->get());
#endif
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -128, 127);
((AP_Int8 *)vp)->set_and_save(v);
} else {
// we don't support mavlink set on this parameter
break;
}
// Report back the new value if we accepted the change
// we send the value we actually set, which could be
// different from the value sent, in case someone sent
// a fractional value to an integer type
mavlink_msg_param_value_send(
chan,
key,
vp->cast_to_float(var_type),
mav_var_type(var_type),
_count_parameters(),
-1); // XXX we don't actually know what its index is...
}
break;
} // end case
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: //70
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component))
break;
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
hal.rcin->set_overrides(v, 8);
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE:
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
float vel = sqrt((packet.vx * (float)packet.vx) + (packet.vy * (float)packet.vy));
float cog = wrap_360(ToDeg(atan2(packet.vx, packet.vy)) * 100);
// set gps hil sensor
g_gps->setHIL(packet.time_usec/1000,
packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3,
vel*1.0e-2, cog*1.0e-2, 0, 10);
if (gps_base_alt == 0) {
gps_base_alt = g_gps->altitude;
}
current_loc.lng = g_gps->longitude;
current_loc.lat = g_gps->latitude;
current_loc.alt = g_gps->altitude - gps_base_alt;
if (!ap.home_is_set) {
init_home();
}
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = (float)packet.xacc / 1000.0;
accels.y = (float)packet.yacc / 1000.0;
accels.z = (float)packet.zacc / 1000.0;
ins.set_gyro_offsets(gyros);
ins.set_accel_offsets(accels);
// set AHRS hil sensor
ahrs.setHil(packet.roll,packet.pitch,packet.yaw,packet.rollspeed,
packet.pitchspeed,packet.yawspeed);
break;
}
#endif // HIL_MODE != HIL_MODE_DISABLED
/*
* case MAVLINK_MSG_ID_HEARTBEAT:
* {
* // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
* if(msg->sysid != g.sysid_my_gcs) break;
* rc_override_fs_timer = millis();
* break;
* }
*
* #if HIL_MODE != HIL_MODE_DISABLED
* // This is used both as a sensor and to pass the location
* // in HIL_ATTITUDE mode.
* case MAVLINK_MSG_ID_GPS_RAW:
* {
* // decode
* mavlink_gps_raw_t packet;
* mavlink_msg_gps_raw_decode(msg, &packet);
*
* // set gps hil sensor
* g_gps->setHIL(packet.usec/1000,packet.lat,packet.lon,packet.alt,
* packet.v,packet.hdg,0,0);
* break;
* }
* #endif
*/
#if HIL_MODE == HIL_MODE_SENSORS
case MAVLINK_MSG_ID_RAW_IMU: // 28
{
// decode
mavlink_raw_imu_t packet;
mavlink_msg_raw_imu_decode(msg, &packet);
// set imu hil sensors
// TODO: check scaling for temp/absPress
float temp = 70;
float absPress = 1;
// cliSerial->printf_P(PSTR("accel:\t%d\t%d\t%d\n"), packet.xacc, packet.yacc, packet.zacc);
// cliSerial->printf_P(PSTR("gyro:\t%d\t%d\t%d\n"), packet.xgyro, packet.ygyro, packet.zgyro);
// rad/sec
Vector3f gyros;
gyros.x = (float)packet.xgyro / 1000.0;
gyros.y = (float)packet.ygyro / 1000.0;
gyros.z = (float)packet.zgyro / 1000.0;
// m/s/s
Vector3f accels;
accels.x = (float)packet.xacc / 1000.0;
accels.y = (float)packet.yacc / 1000.0;
accels.z = (float)packet.zacc / 1000.0;
ins.set_gyro_offsets(gyros);
ins.set_accel_offsets(accels);
compass.setHIL(packet.xmag,packet.ymag,packet.zmag);
break;
}
case MAVLINK_MSG_ID_RAW_PRESSURE: //29
{
// decode
mavlink_raw_pressure_t packet;
mavlink_msg_raw_pressure_decode(msg, &packet);
// set pressure hil sensor
// TODO: check scaling
float temp = 70;
barometer.setHIL(temp,packet.press_diff1);
break;
}
#endif // HIL_MODE
#if CAMERA == ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
{
g.camera.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
g.camera.control_msg(msg);
break;
}
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
camera_mount.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
camera_mount.control_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_STATUS:
{
camera_mount.status_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
{
mavlink_radio_t packet;
mavlink_msg_radio_decode(msg, &packet);
// use the state of the transmit buffer in the radio to
// control the stream rate, giving us adaptive software
// flow control
if (packet.txbuf < 20 && stream_slowdown < 100) {
// we are very low on space - slow down a lot
stream_slowdown += 3;
} else if (packet.txbuf < 50 && stream_slowdown < 100) {
// we are a bit low on space, slow down slightly
stream_slowdown += 1;
} else if (packet.txbuf > 95 && stream_slowdown > 10) {
// the buffer has plenty of space, speed up a lot
stream_slowdown -= 2;
} else if (packet.txbuf > 90 && stream_slowdown != 0) {
// the buffer has enough space, speed up a bit
stream_slowdown--;
}
break;
}
#ifdef AP_LIMITS
// receive an AP_Limits fence point from GCS and store in EEPROM
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
if (packet.count != geofence_limit.fence_total()) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point;
point.x = packet.lat*1.0e7;
point.y = packet.lng*1.0e7;
geofence_limit.set_fence_point_with_index(point, packet.idx);
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
if (packet.idx >= geofence_limit.fence_total()) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point = geofence_limit.get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send(chan, 0, 0, packet.idx, geofence_limit.fence_total(),
point.x*1.0e-7, point.y*1.0e-7);
}
break;
}
#endif // AP_LIMITS ENABLED
} // end switch
} // end handle mavlink
uint16_t
GCS_MAVLINK::_count_parameters()
{
// if we haven't cached the parameter count yet...
if (0 == _parameter_count) {
AP_Param *vp;
AP_Param::ParamToken token;
vp = AP_Param::first(&token, NULL);
do {
_parameter_count++;
} while (NULL != (vp = AP_Param::next_scalar(&token, NULL)));
}
return _parameter_count;
}
/**
* @brief Send the next pending parameter, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_param_send()
{
// Check to see if we are sending parameters
if (NULL == _queued_parameter) return;
AP_Param *vp;
float value;
// copy the current parameter and prepare to move to the next
vp = _queued_parameter;
// if the parameter can be cast to float, report it here and break out of the loop
value = vp->cast_to_float(_queued_parameter_type);
char param_name[AP_MAX_NAME_SIZE];
vp->copy_name(param_name, sizeof(param_name), true);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(_queued_parameter_type),
_queued_parameter_count,
_queued_parameter_index);
_queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index++;
}
/**
* @brief Send the next pending waypoint, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_waypoint_send()
{
if (waypoint_receiving &&
waypoint_request_i < (unsigned)g.command_total) {
mavlink_msg_mission_request_send(
chan,
waypoint_dest_sysid,
waypoint_dest_compid,
waypoint_request_i);
}
}
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs0.initialised) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
gcs0.send_message(id);
if (gcs3.initialised) {
gcs3.send_message(id);
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
gcs0.data_stream_send();
if (gcs3.initialised) {
gcs3.data_stream_send();
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
gcs0.update();
if (gcs3.initialised) {
gcs3.update();
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
gcs0.send_text_P(severity, str);
if (gcs3.initialised) {
gcs3.send_text_P(severity, str);
}
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
static void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)pending_status.text,
sizeof(pending_status.text), fmt, arg_list);
va_end(arg_list);
mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0);
if (gcs3.initialised) {
mavlink_send_message(MAVLINK_COMM_1, MSG_STATUSTEXT, 0);
}
}