ardupilot/libraries/AR_Motors/AP_MotorsUGV.h

238 lines
9.6 KiB
C++

#pragma once
#include <AP_Arming/AP_Arming.h>
#include <AP_ServoRelayEvents/AP_ServoRelayEvents.h>
#include <AP_WheelEncoder/AP_WheelRateControl.h>
#include <SRV_Channel/SRV_Channel.h>
class AP_MotorsUGV {
public:
// Constructor
AP_MotorsUGV(AP_ServoRelayEvents &relayEvents, AP_WheelRateControl& rate_controller);
// singleton support
static AP_MotorsUGV *get_singleton(void) { return _singleton; }
enum motor_test_order {
MOTOR_TEST_THROTTLE = 1,
MOTOR_TEST_STEERING = 2,
MOTOR_TEST_THROTTLE_LEFT = 3,
MOTOR_TEST_THROTTLE_RIGHT = 4,
MOTOR_TEST_MAINSAIL = 5,
MOTOR_TEST_LAST
};
// supported omni motor configurations
enum frame_type {
FRAME_TYPE_UNDEFINED = 0,
FRAME_TYPE_OMNI3 = 1,
FRAME_TYPE_OMNIX = 2,
FRAME_TYPE_OMNIPLUS = 3,
};
// initialise motors
void init(uint8_t ftype);
// return true if motors are active
bool active() const;
// setup output in case of main CPU failure
void setup_safety_output();
// setup servo output ranges
void setup_servo_output();
// get or set steering as a value from -4500 to +4500
// apply_scaling should be set to false for manual modes where
// no scaling by speed or angle should e performed
float get_steering() const { return _steering; }
void set_steering(float steering, bool apply_scaling = true);
// get or set throttle as a value from -100 to 100
float get_throttle() const { return _throttle; }
void set_throttle(float throttle);
// get or set roll as a value from -1 to 1
float get_roll() const { return _roll; }
void set_roll(float roll);
// get or set pitch as a value from -1 to 1
float get_pitch() const { return _pitch; }
void set_pitch(float pitch);
// get or set walking_height as a value from -1 to 1
float get_walking_height() const { return _walking_height; }
void set_walking_height(float walking_height);
// get or set lateral input as a value from -100 to +100
float get_lateral() const { return _lateral; }
void set_lateral(float lateral);
// set or get mainsail input as a value from 0 to 100
void set_mainsail(float mainsail);
float get_mainsail() const { return _mainsail; }
// set or get wingsail input as a value from -100 to 100
void set_wingsail(float wingsail);
float get_wingsail() const { return _wingsail; }
// set or get mast rotation input as a value from -100 to 100
void set_mast_rotation(float mast_rotation);
float get_mast_rotation() const { return _mast_rotation; }
// get slew limited throttle
// used by manual mode to avoid bad steering behaviour during transitions from forward to reverse
// same as private slew_limit_throttle method (see below) but does not update throttle state
float get_slew_limited_throttle(float throttle, float dt) const;
// true if vehicle is capable of skid steering
bool have_skid_steering() const;
// true if vehicle has vectored thrust (i.e. boat with motor on steering servo)
bool have_vectored_thrust() const { return is_positive(_vector_angle_max); }
// output to motors and steering servos
// ground_speed should be the vehicle's speed over the surface in m/s
// dt should be expected time between calls to this function
void output(bool armed, float ground_speed, float dt);
// test steering or throttle output as a percentage of the total (range -100 to +100)
// used in response to DO_MOTOR_TEST mavlink command
bool output_test_pct(motor_test_order motor_seq, float pct);
// test steering or throttle output using a pwm value
bool output_test_pwm(motor_test_order motor_seq, float pwm);
// returns true if checks pass, false if they fail. display_failure argument should be true to send text messages to GCS
bool pre_arm_check(bool report) const;
// return the motor mask
uint32_t get_motor_mask() const { return _motor_mask; }
// returns true if the configured PWM type is digital and should have fixed endpoints
bool is_digital_pwm_type() const;
// returns true if the vehicle is omni
bool is_omni() const { return _frame_type != FRAME_TYPE_UNDEFINED && _motors_num > 0; }
// structure for holding motor limit flags
struct AP_MotorsUGV_limit {
uint8_t steer_left : 1; // we have reached the steering controller's left most limit
uint8_t steer_right : 1; // we have reached the steering controller's right most limit
uint8_t throttle_lower : 1; // we have reached throttle's lower limit
uint8_t throttle_upper : 1; // we have reached throttle's upper limit
} limit;
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
private:
enum pwm_type {
PWM_TYPE_NORMAL = 0,
PWM_TYPE_ONESHOT = 1,
PWM_TYPE_ONESHOT125 = 2,
PWM_TYPE_BRUSHED_WITH_RELAY = 3,
PWM_TYPE_BRUSHED_BIPOLAR = 4,
PWM_TYPE_DSHOT150 = 5,
PWM_TYPE_DSHOT300 = 6,
PWM_TYPE_DSHOT600 = 7,
PWM_TYPE_DSHOT1200 = 8
};
// sanity check parameters
void sanity_check_parameters();
// setup pwm output type
void setup_pwm_type();
// setup for frames with omni motors
void setup_omni();
// add omni motor using separate throttle, steering and lateral factors
void add_omni_motor(int8_t motor_num, float throttle_factor, float steering_factor, float lateral_factor);
// add a motor and set up output function
void add_omni_motor_num(int8_t motor_num);
// disable omni motor and remove all throttle, steering and lateral factor for this motor
void clear_omni_motors(int8_t motor_num);
// output to regular steering and throttle channels
void output_regular(bool armed, float ground_speed, float steering, float throttle);
// output to skid steering channels
void output_skid_steering(bool armed, float steering, float throttle, float dt);
// output for omni motors
void output_omni(bool armed, float steering, float throttle, float lateral);
// output throttle (-100 ~ +100) to a throttle channel. Sets relays if required
// dt is the main loop time interval and is required when rate control is required
void output_throttle(SRV_Channel::Aux_servo_function_t function, float throttle, float dt = 0.0f);
// output for sailboat's mainsail in the range of 0 to 100 and wing sail in the range +- 100
void output_sail();
// true if the vehicle has a mainsail or wing sail
bool has_sail() const;
// slew limit throttle for one iteration
void slew_limit_throttle(float dt);
// set limits based on steering and throttle input
void set_limits_from_input(bool armed, float steering, float throttle);
// scale a throttle using the _thrust_curve_expo parameter. throttle should be in the range -100 to +100
float get_scaled_throttle(float throttle) const;
// use rate controller to achieve desired throttle
float get_rate_controlled_throttle(SRV_Channel::Aux_servo_function_t function, float throttle, float dt);
// external references
AP_ServoRelayEvents &_relayEvents;
AP_WheelRateControl &_rate_controller;
static const int8_t AP_MOTORS_NUM_MOTORS_MAX = 4;
// parameters
AP_Int8 _pwm_type; // PWM output type
AP_Int8 _pwm_freq; // PWM output freq for brushed motors
AP_Int8 _disarm_disable_pwm; // disable PWM output while disarmed
AP_Int16 _slew_rate; // slew rate expressed as a percentage / second
AP_Int8 _throttle_min; // throttle minimum percentage
AP_Int8 _throttle_max; // throttle maximum percentage
AP_Float _thrust_curve_expo; // thrust curve exponent from -1 to +1 with 0 being linear
AP_Float _thrust_asymmetry; // asymmetry factor, how much better your skid-steering motors are at going forward than backwards (forward/backward thrust ratio)
AP_Float _vector_angle_max; // angle between steering's middle position and maximum position when using vectored thrust. zero to disable vectored thrust
AP_Float _speed_scale_base; // speed above which steering is scaled down when using regular steering/throttle vehicles. zero to disable speed scaling
AP_Float _steering_throttle_mix; // Steering vs Throttle priorisation. Higher numbers prioritise steering, lower numbers prioritise throttle. Only valid for Skid Steering vehicles
// internal variables
float _steering; // requested steering as a value from -4500 to +4500
float _throttle; // requested throttle as a value from -100 to 100
float _throttle_prev; // throttle input from previous iteration
bool _scale_steering = true; // true if we should scale steering by speed or angle
float _lateral; // requested lateral input as a value from -100 to +100
float _roll; // requested roll as a value from -1 to +1
float _pitch; // requested pitch as a value from -1 to +1
float _walking_height; // requested height as a value from -1 to +1
float _mainsail; // requested mainsail input as a value from 0 to 100
float _wingsail; // requested wing sail input as a value in the range +- 100
float _mast_rotation; // requested mast rotation input as a value in the range +- 100
uint32_t _motor_mask; // mask of motors configured with pwm_type
frame_type _frame_type; // frame type requested at initialisation
// omni variables
float _throttle_factor[AP_MOTORS_NUM_MOTORS_MAX];
float _steering_factor[AP_MOTORS_NUM_MOTORS_MAX];
float _lateral_factor[AP_MOTORS_NUM_MOTORS_MAX];
uint8_t _motors_num;
static AP_MotorsUGV *_singleton;
};
namespace AP {
AP_MotorsUGV *motors_ugv();
};