ardupilot/ArduCopter/motors_quad.pde

210 lines
5.1 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == QUAD_FRAME
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4),
g.rc_speed);
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
}
static void output_motors_armed()
{
int roll_out, pitch_out;
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = (float)g.rc_1.pwm_out * 0.707;
pitch_out = (float)g.rc_2.pwm_out * 0.707;
// left
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
motor_out[MOT_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
// right
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK
}else{
roll_out = g.rc_1.pwm_out;
pitch_out = g.rc_2.pwm_out;
// right motor
motor_out[MOT_1] = g.rc_3.radio_out - roll_out;
// left motor
motor_out[MOT_2] = g.rc_3.radio_out + roll_out;
// front motor
motor_out[MOT_3] = g.rc_3.radio_out + pitch_out;
// back motor
motor_out[MOT_4] = g.rc_3.radio_out - pitch_out;
}
// Yaw input
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
motor_out[MOT_2] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
/* We need to clip motor output at out_max. When cipping a motors
* output we also need to compensate for the instability by
* lowering the opposite motor by the same proportion. This
* ensures that we retain control when one or more of the motors
* is at its maximum output
*/
for (int i = MOT_1; i <= MOT_4; i++){
if(motor_out[i] > out_max){
// note that i^1 is the opposite motor
motor_out[i ^ 1] -= motor_out[i] - out_max;
motor_out[i] = out_max;
}
}
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
}
#endif
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
#if INSTANT_PWM == 1
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
#endif
//debug_motors();
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++){
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
}
/*
//static void debug_motors()
{
Serial.printf("1:%d\t2:%d\t3:%d\t4:%d\n",
motor_out[MOT_1],
motor_out[MOT_2],
motor_out[MOT_3],
motor_out[MOT_4]);
}
//*/
static void output_motor_test()
{
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
if(g.frame_orientation == X_FRAME){
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min + 100);
delay(300);
}else{
APM_RC.OutputCh(MOT_2, g.rc_2.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_1, g.rc_1.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, g.rc_1.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_4.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_4.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_2.radio_min + 100);
delay(300);
}
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
}
#endif