ardupilot/libraries/AP_GPS/AP_GPS.h

422 lines
13 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __AP_GPS_H__
#define __AP_GPS_H__
#include <AP_HAL.h>
#include <inttypes.h>
#include <AP_Progmem.h>
#include <AP_Common.h>
#include <AP_Param.h>
#include <AP_Math.h>
#include <GCS_MAVLink.h>
#include <AP_Vehicle.h>
#include "GPS_detect_state.h"
#include "../AP_SerialManager/AP_SerialManager.h"
/**
maximum number of GPS instances available on this platform. If more
than 1 then redundent sensors may be available
*/
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
#define GPS_MAX_INSTANCES 2
#else
#define GPS_MAX_INSTANCES 1
#endif
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
#define GPS_RTK_AVAILABLE 1
#else
#define GPS_RTK_AVAILABLE 0
#endif
/**
* save flash by skipping NMEA and SIRF support on ArduCopter on APM1/2 or any frame type on AVR1280 CPUs
*/
#if HAL_CPU_CLASS < HAL_CPU_CLASS_75 && defined(APM_BUILD_DIRECTORY)
#if (APM_BUILD_TYPE(APM_BUILD_ArduCopter) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__))
#define GPS_SKIP_SIRF_NMEA
#endif
#endif
class DataFlash_Class;
class AP_GPS_Backend;
/// @class AP_GPS
/// GPS driver main class
class AP_GPS
{
public:
// constructor
AP_GPS() {
AP_Param::setup_object_defaults(this, var_info);
}
/// Startup initialisation.
void init(DataFlash_Class *dataflash, const AP_SerialManager& serial_manager);
/// Update GPS state based on possible bytes received from the module.
/// This routine must be called periodically (typically at 10Hz or
/// more) to process incoming data.
void update(void);
//True if any of the underlying GPS Drivers are ready to enter
//a dgps-based fix beyond 3D lock, such as RTK mode.
bool can_calculate_base_pos(void);
//Allows the underlying GPS Drivers to enter a differential lock
//Might cause a position jump, thus only do this on the ground.
void calculate_base_pos(void);
// GPS driver types
enum GPS_Type {
GPS_TYPE_NONE = 0,
GPS_TYPE_AUTO = 1,
GPS_TYPE_UBLOX = 2,
GPS_TYPE_MTK = 3,
GPS_TYPE_MTK19 = 4,
GPS_TYPE_NMEA = 5,
GPS_TYPE_SIRF = 6,
GPS_TYPE_HIL = 7,
GPS_TYPE_SBP = 8,
GPS_TYPE_PX4 = 9
};
/// GPS status codes
enum GPS_Status {
NO_GPS = 0, ///< No GPS connected/detected
NO_FIX = 1, ///< Receiving valid GPS messages but no lock
GPS_OK_FIX_2D = 2, ///< Receiving valid messages and 2D lock
GPS_OK_FIX_3D = 3, ///< Receiving valid messages and 3D lock
GPS_OK_FIX_3D_DGPS = 4, ///< Receiving valid messages and 3D lock with differential improvements
GPS_OK_FIX_3D_RTK = 5, ///< Receiving valid messages and 3D lock, with relative-positioning improvements
};
// GPS navigation engine settings. Not all GPS receivers support
// this
enum GPS_Engine_Setting {
GPS_ENGINE_NONE = -1,
GPS_ENGINE_PORTABLE = 0,
GPS_ENGINE_STATIONARY = 2,
GPS_ENGINE_PEDESTRIAN = 3,
GPS_ENGINE_AUTOMOTIVE = 4,
GPS_ENGINE_SEA = 5,
GPS_ENGINE_AIRBORNE_1G = 6,
GPS_ENGINE_AIRBORNE_2G = 7,
GPS_ENGINE_AIRBORNE_4G = 8
};
/*
The GPS_State structure is filled in by the backend driver as it
parses each message from the GPS.
*/
struct GPS_State {
uint8_t instance; // the instance number of this GPS
// all the following fields must all be filled by the backend driver
GPS_Status status; ///< driver fix status
uint32_t time_week_ms; ///< GPS time (milliseconds from start of GPS week)
uint16_t time_week; ///< GPS week number
Location location; ///< last fix location
float ground_speed; ///< ground speed in m/sec
int32_t ground_course_cd; ///< ground course in 100ths of a degree
uint16_t hdop; ///< horizontal dilution of precision in cm
uint8_t num_sats; ///< Number of visible satelites
Vector3f velocity; ///< 3D velocitiy in m/s, in NED format
float speed_accuracy;
float horizontal_accuracy;
float vertical_accuracy;
bool have_vertical_velocity:1; ///< does this GPS give vertical velocity?
bool have_speed_accuracy:1;
bool have_horizontal_accuracy:1;
bool have_vertical_accuracy:1;
uint32_t last_gps_time_ms; ///< the system time we got the last GPS timestamp, milliseconds
};
// Accessor functions
// return number of active GPS sensors. Note that if the first GPS
// is not present but the 2nd is then we return 2
uint8_t num_sensors(void) const {
return num_instances;
}
uint8_t primary_sensor(void) const {
return primary_instance;
}
// using these macros saves some code space on APM2
#if GPS_MAX_INSTANCES == 1
# define _GPS_STATE(instance) state[0]
# define _GPS_TIMING(instance) timing[0]
#else
# define _GPS_STATE(instance) state[instance]
# define _GPS_TIMING(instance) timing[instance]
#endif
/// Query GPS status
GPS_Status status(uint8_t instance) const {
return _GPS_STATE(instance).status;
}
GPS_Status status(void) const {
return status(primary_instance);
}
// Query the highest status this GPS supports
GPS_Status highest_supported_status(uint8_t instance) const;
GPS_Status highest_supported_status(void) const;
// location of last fix
const Location &location(uint8_t instance) const {
return _GPS_STATE(instance).location;
}
const Location &location() const {
return location(primary_instance);
}
bool speed_accuracy(uint8_t instance, float &sacc) const {
if(_GPS_STATE(instance).have_speed_accuracy) {
sacc = _GPS_STATE(instance).speed_accuracy;
return true;
}
return false;
}
bool speed_accuracy(float &sacc) const {
return speed_accuracy(primary_instance, sacc);
}
bool horizontal_accuracy(uint8_t instance, float &hacc) const {
if(_GPS_STATE(instance).have_horizontal_accuracy) {
hacc = _GPS_STATE(instance).horizontal_accuracy;
return true;
}
return false;
}
bool horizontal_accuracy(float &hacc) const {
return horizontal_accuracy(primary_instance, hacc);
}
bool vertical_accuracy(uint8_t instance, float &vacc) const {
if(_GPS_STATE(instance).have_vertical_accuracy) {
vacc = _GPS_STATE(instance).vertical_accuracy;
return true;
}
return false;
}
bool vertical_accuracy(float &vacc) const {
return vertical_accuracy(primary_instance, vacc);
}
// 3D velocity in NED format
const Vector3f &velocity(uint8_t instance) const {
return _GPS_STATE(instance).velocity;
}
const Vector3f &velocity() const {
return velocity(primary_instance);
}
// ground speed in m/s
float ground_speed(uint8_t instance) const {
return _GPS_STATE(instance).ground_speed;
}
float ground_speed() const {
return ground_speed(primary_instance);
}
// ground speed in cm/s
uint32_t ground_speed_cm(void) {
return ground_speed() * 100;
}
// ground course in centidegrees
int32_t ground_course_cd(uint8_t instance) const {
return _GPS_STATE(instance).ground_course_cd;
}
int32_t ground_course_cd() const {
return ground_course_cd(primary_instance);
}
// number of locked satellites
uint8_t num_sats(uint8_t instance) const {
return _GPS_STATE(instance).num_sats;
}
uint8_t num_sats() const {
return num_sats(primary_instance);
}
// GPS time of week in milliseconds
uint32_t time_week_ms(uint8_t instance) const {
return _GPS_STATE(instance).time_week_ms;
}
uint32_t time_week_ms() const {
return time_week_ms(primary_instance);
}
// GPS week
uint16_t time_week(uint8_t instance) const {
return _GPS_STATE(instance).time_week;
}
uint16_t time_week() const {
return time_week(primary_instance);
}
// horizontal dilution of precision
uint16_t get_hdop(uint8_t instance) const {
return _GPS_STATE(instance).hdop;
}
uint16_t get_hdop() const {
return get_hdop(primary_instance);
}
// the time we got our last fix in system milliseconds. This is
// used when calculating how far we might have moved since that fix
uint32_t last_fix_time_ms(uint8_t instance) const {
return _GPS_TIMING(instance).last_fix_time_ms;
}
uint32_t last_fix_time_ms(void) const {
return last_fix_time_ms(primary_instance);
}
// the time we last processed a message in milliseconds. This is
// used to indicate that we have new GPS data to process
uint32_t last_message_time_ms(uint8_t instance) const {
return _GPS_TIMING(instance).last_message_time_ms;
}
uint32_t last_message_time_ms(void) const {
return last_message_time_ms(primary_instance);
}
// return last fix time since the 1/1/1970 in microseconds
uint64_t time_epoch_usec(uint8_t instance);
uint64_t time_epoch_usec(void) {
return time_epoch_usec(primary_instance);
}
// return true if the GPS supports vertical velocity values
bool have_vertical_velocity(uint8_t instance) const {
return _GPS_STATE(instance).have_vertical_velocity;
}
bool have_vertical_velocity(void) const {
return have_vertical_velocity(primary_instance);
}
// the expected lag (in seconds) in the position and velocity readings from the gps
float get_lag() const { return 0.2f; }
// set position for HIL
void setHIL(uint8_t instance, GPS_Status status, uint64_t time_epoch_ms,
const Location &location, const Vector3f &velocity, uint8_t num_sats,
uint16_t hdop, bool _have_vertical_velocity);
static const struct AP_Param::GroupInfo var_info[];
// dataflash for logging, if available
DataFlash_Class *_DataFlash;
// configuration parameters
AP_Int8 _type[GPS_MAX_INSTANCES];
AP_Int8 _navfilter;
#if GPS_MAX_INSTANCES > 1
AP_Int8 _auto_switch;
AP_Int8 _min_dgps;
#endif
AP_Int8 _sbas_mode;
AP_Int8 _min_elevation;
// handle sending of initialisation strings to the GPS
void send_blob_start(uint8_t instance, const prog_char *_blob, uint16_t size);
void send_blob_update(uint8_t instance);
// lock out a GPS port, allowing another application to use the port
void lock_port(uint8_t instance, bool locked);
//MAVLink Status Sending
void send_mavlink_gps_raw(mavlink_channel_t chan);
#if GPS_MAX_INSTANCES > 1
void send_mavlink_gps2_raw(mavlink_channel_t chan);
#endif
#if GPS_RTK_AVAILABLE
void send_mavlink_gps_rtk(mavlink_channel_t chan);
#if GPS_MAX_INSTANCES > 1
void send_mavlink_gps2_rtk(mavlink_channel_t chan);
#endif
#endif
private:
struct GPS_timing {
// the time we got our last fix in system milliseconds
uint32_t last_fix_time_ms;
// the time we got our last fix in system milliseconds
uint32_t last_message_time_ms;
};
GPS_timing timing[GPS_MAX_INSTANCES];
GPS_State state[GPS_MAX_INSTANCES];
AP_GPS_Backend *drivers[GPS_MAX_INSTANCES];
AP_HAL::UARTDriver *_port[GPS_MAX_INSTANCES];
/// primary GPS instance
uint8_t primary_instance:2;
/// number of GPS instances present
uint8_t num_instances:2;
// which ports are locked
uint8_t locked_ports:2;
// state of auto-detection process, per instance
struct detect_state {
uint32_t detect_started_ms;
uint32_t last_baud_change_ms;
uint8_t last_baud;
struct UBLOX_detect_state ublox_detect_state;
struct MTK_detect_state mtk_detect_state;
struct MTK19_detect_state mtk19_detect_state;
struct SIRF_detect_state sirf_detect_state;
struct NMEA_detect_state nmea_detect_state;
#if GPS_RTK_AVAILABLE
struct SBP_detect_state sbp_detect_state;
#endif
} detect_state[GPS_MAX_INSTANCES];
struct {
const prog_char *blob;
uint16_t remaining;
} initblob_state[GPS_MAX_INSTANCES];
static const uint32_t _baudrates[];
static const prog_char _initialisation_blob[];
void detect_instance(uint8_t instance);
void update_instance(uint8_t instance);
};
#include <GPS_Backend.h>
#include <AP_GPS_UBLOX.h>
#include <AP_GPS_MTK.h>
#include <AP_GPS_MTK19.h>
#include <AP_GPS_NMEA.h>
#include <AP_GPS_SIRF.h>
#include <AP_GPS_SBP.h>
#include <AP_GPS_PX4.h>
#endif // __AP_GPS_H__