mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 23:28:32 -04:00
349 lines
13 KiB
C++
349 lines
13 KiB
C++
#include "mode.h"
|
|
#include "Rover.h"
|
|
|
|
#define MODE_AHRS_GPS_ERROR_MAX 10 // accept up to 10m difference between AHRS and GPS
|
|
|
|
Mode::Mode() :
|
|
ahrs(rover.ahrs),
|
|
g(rover.g),
|
|
g2(rover.g2),
|
|
channel_steer(rover.channel_steer),
|
|
channel_throttle(rover.channel_throttle),
|
|
mission(rover.mission),
|
|
attitude_control(rover.g2.attitude_control)
|
|
{ }
|
|
|
|
void Mode::exit()
|
|
{
|
|
// call sub-classes exit
|
|
_exit();
|
|
|
|
lateral_acceleration = 0.0f;
|
|
}
|
|
|
|
// these are basically the same checks as in AP_Arming:
|
|
bool Mode::enter_gps_checks() const
|
|
{
|
|
const AP_GPS &gps = AP::gps();
|
|
|
|
if (gps.status() < AP_GPS::GPS_OK_FIX_3D) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "Bad GPS Position");
|
|
return false;
|
|
}
|
|
//GPS update rate acceptable
|
|
if (!gps.is_healthy()) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "GPS is not healthy");
|
|
}
|
|
|
|
// check GPSs are within 50m of each other and that blending is healthy
|
|
float distance_m;
|
|
if (!gps.all_consistent(distance_m)) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL,
|
|
"GPS positions differ by %4.1fm",
|
|
(double)distance_m);
|
|
return false;
|
|
}
|
|
if (!gps.blend_health_check()) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "GPS blending unhealthy");
|
|
return false;
|
|
}
|
|
|
|
// check AHRS and GPS are within 10m of each other
|
|
const Location gps_loc = gps.location();
|
|
Location ahrs_loc;
|
|
if (ahrs.get_position(ahrs_loc)) {
|
|
float distance = location_3d_diff_NED(gps_loc, ahrs_loc).length();
|
|
if (distance > MODE_AHRS_GPS_ERROR_MAX) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "GPS and AHRS differ by %4.1fm", (double)distance);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Mode::enter()
|
|
{
|
|
const bool ignore_checks = !hal.util->get_soft_armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
|
|
if (!ignore_checks) {
|
|
if (requires_gps() && !enter_gps_checks()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return _enter();
|
|
}
|
|
|
|
void Mode::get_pilot_desired_steering_and_throttle(float &steering_out, float &throttle_out)
|
|
{
|
|
// no RC input means no throttle and centered steering
|
|
if (rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) {
|
|
steering_out = 0;
|
|
throttle_out = 0;
|
|
return;
|
|
}
|
|
|
|
// apply RC skid steer mixing
|
|
switch ((enum pilot_steer_type_t)rover.g.pilot_steer_type.get())
|
|
{
|
|
case PILOT_STEER_TYPE_DEFAULT:
|
|
default: {
|
|
// by default regular and skid-steering vehicles reverse their rotation direction when backing up
|
|
// (this is the same as PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING below)
|
|
throttle_out = rover.channel_throttle->get_control_in();
|
|
steering_out = rover.channel_steer->get_control_in();
|
|
break;
|
|
}
|
|
|
|
case PILOT_STEER_TYPE_TWO_PADDLES: {
|
|
// convert the two radio_in values from skid steering values
|
|
// left paddle from steering input channel, right paddle from throttle input channel
|
|
// steering = left-paddle - right-paddle
|
|
// throttle = average(left-paddle, right-paddle)
|
|
const float left_paddle = rover.channel_steer->norm_input();
|
|
const float right_paddle = rover.channel_throttle->norm_input();
|
|
|
|
throttle_out = 0.5f * (left_paddle + right_paddle) * 100.0f;
|
|
|
|
const float steering_dir = is_negative(throttle_out) ? -1 : 1;
|
|
steering_out = steering_dir * (left_paddle - right_paddle) * 4500.0f;
|
|
break;
|
|
}
|
|
|
|
case PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING:
|
|
throttle_out = rover.channel_throttle->get_control_in();
|
|
steering_out = rover.channel_steer->get_control_in();
|
|
break;
|
|
|
|
case PILOT_STEER_TYPE_DIR_UNCHANGED_WHEN_REVERSING: {
|
|
throttle_out = rover.channel_throttle->get_control_in();
|
|
const float steering_dir = is_negative(throttle_out) ? -1 : 1;
|
|
steering_out = steering_dir * rover.channel_steer->get_control_in();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// set desired location
|
|
void Mode::set_desired_location(const struct Location& destination, float next_leg_bearing_cd)
|
|
{
|
|
// record targets
|
|
_origin = rover.current_loc;
|
|
_destination = destination;
|
|
_desired_speed = g.speed_cruise;
|
|
|
|
// initialise distance
|
|
_distance_to_destination = get_distance(_origin, _destination);
|
|
_reached_destination = false;
|
|
|
|
// set final desired speed
|
|
_desired_speed_final = 0.0f;
|
|
if (!is_equal(next_leg_bearing_cd, MODE_NEXT_HEADING_UNKNOWN)) {
|
|
// if not turning can continue at full speed
|
|
if (is_zero(next_leg_bearing_cd)) {
|
|
_desired_speed_final = _desired_speed;
|
|
} else {
|
|
// calculate maximum speed that keeps overshoot within bounds
|
|
const float curr_leg_bearing_cd = get_bearing_cd(_origin, _destination);
|
|
const float turn_angle_cd = wrap_180_cd(next_leg_bearing_cd - curr_leg_bearing_cd);
|
|
const float radius_m = fabsf(g.waypoint_overshoot / (cosf(radians(turn_angle_cd * 0.01f)) - 1.0f));
|
|
_desired_speed_final = MIN(_desired_speed, safe_sqrt(g.turn_max_g * GRAVITY_MSS * radius_m));
|
|
}
|
|
}
|
|
}
|
|
|
|
// set desired location as an offset from the EKF origin in NED frame
|
|
bool Mode::set_desired_location_NED(const Vector3f& destination, float next_leg_bearing_cd)
|
|
{
|
|
Location destination_ned;
|
|
// initialise destination to ekf origin
|
|
if (!ahrs.get_origin(destination_ned)) {
|
|
return false;
|
|
}
|
|
// apply offset
|
|
location_offset(destination_ned, destination.x, destination.y);
|
|
set_desired_location(destination_ned, next_leg_bearing_cd);
|
|
return true;
|
|
}
|
|
|
|
// set desired heading and speed
|
|
void Mode::set_desired_heading_and_speed(float yaw_angle_cd, float target_speed)
|
|
{
|
|
// handle initialisation
|
|
_reached_destination = false;
|
|
|
|
// record targets
|
|
_desired_yaw_cd = yaw_angle_cd;
|
|
_desired_speed = target_speed;
|
|
}
|
|
|
|
void Mode::calc_throttle(float target_speed, bool nudge_allowed)
|
|
{
|
|
// add in speed nudging
|
|
if (nudge_allowed) {
|
|
target_speed = calc_speed_nudge(target_speed, g.speed_cruise, g.throttle_cruise * 0.01f);
|
|
}
|
|
|
|
// call throttle controller and convert output to -100 to +100 range
|
|
float throttle_out = 100.0f * attitude_control.get_throttle_out_speed(target_speed, g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f);
|
|
|
|
// send to motor
|
|
g2.motors.set_throttle(throttle_out);
|
|
}
|
|
|
|
// performs a controlled stop with steering centered
|
|
bool Mode::stop_vehicle()
|
|
{
|
|
// call throttle controller and convert output to -100 to +100 range
|
|
bool stopped = false;
|
|
float throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, stopped);
|
|
|
|
// send to motor
|
|
g2.motors.set_throttle(throttle_out);
|
|
|
|
// do not attempt to steer
|
|
g2.motors.set_steering(0.0f);
|
|
|
|
// return true once stopped
|
|
return stopped;
|
|
}
|
|
|
|
// estimate maximum vehicle speed (in m/s)
|
|
float Mode::calc_speed_max(float cruise_speed, float cruise_throttle)
|
|
{
|
|
float speed_max;
|
|
|
|
// sanity checks
|
|
if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) {
|
|
speed_max = cruise_speed;
|
|
} else {
|
|
// project vehicle's maximum speed
|
|
speed_max = (1.0f / cruise_throttle) * cruise_speed;
|
|
}
|
|
|
|
// constrain to 30m/s (108km/h) and return
|
|
return constrain_float(speed_max, 0.0f, 30.0f);
|
|
}
|
|
|
|
// calculate pilot input to nudge speed up or down
|
|
// target_speed should be in meters/sec
|
|
// cruise_speed is vehicle's cruising speed, cruise_throttle is the throttle (from -1 to +1) that achieves the cruising speed
|
|
// return value is a new speed (in m/s) which up to the projected maximum speed based on the cruise speed and cruise throttle
|
|
float Mode::calc_speed_nudge(float target_speed, float cruise_speed, float cruise_throttle)
|
|
{
|
|
// return immediately if pilot is not attempting to nudge speed
|
|
// pilot can nudge up speed if throttle (in range -100 to +100) is above 50% of center in direction of travel
|
|
const int16_t pilot_throttle = constrain_int16(rover.channel_throttle->get_control_in(), -100, 100);
|
|
if (((pilot_throttle <= 50) && (target_speed >= 0.0f)) ||
|
|
((pilot_throttle >= -50) && (target_speed <= 0.0f))) {
|
|
return target_speed;
|
|
}
|
|
|
|
// sanity checks
|
|
if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) {
|
|
return target_speed;
|
|
}
|
|
|
|
// project vehicle's maximum speed
|
|
const float vehicle_speed_max = calc_speed_max(cruise_speed, cruise_throttle);
|
|
|
|
// return unadjusted target if already over vehicle's projected maximum speed
|
|
if (target_speed >= vehicle_speed_max) {
|
|
return target_speed;
|
|
}
|
|
|
|
const float speed_increase_max = vehicle_speed_max - fabsf(target_speed);
|
|
float speed_nudge = ((static_cast<float>(abs(pilot_throttle)) - 50.0f) * 0.02f) * speed_increase_max;
|
|
if (pilot_throttle < 0) {
|
|
speed_nudge = -speed_nudge;
|
|
}
|
|
|
|
return target_speed + speed_nudge;
|
|
}
|
|
|
|
// calculated a reduced speed(in m/s) based on yaw error and lateral acceleration and/or distance to a waypoint
|
|
// should be called after calc_lateral_acceleration and before calc_throttle
|
|
// relies on these internal members being updated: lateral_acceleration, _yaw_error_cd, _distance_to_destination
|
|
float Mode::calc_reduced_speed_for_turn_or_distance(float desired_speed)
|
|
{
|
|
// this method makes use the following internal variables
|
|
const float yaw_error_cd = _yaw_error_cd;
|
|
const float target_lateral_accel_G = lateral_acceleration;
|
|
const float distance_to_waypoint = _distance_to_destination;
|
|
|
|
// calculate the yaw_error_ratio which is the error (capped at 90degrees) expressed as a ratio (from 0 ~ 1)
|
|
float yaw_error_ratio = constrain_float(fabsf(yaw_error_cd / 9000.0f), 0.0f, 1.0f);
|
|
|
|
// apply speed_turn_gain parameter (expressed as a percentage) to yaw_error_ratio
|
|
yaw_error_ratio *= (100 - g.speed_turn_gain) * 0.01f;
|
|
|
|
// calculate absolute lateral acceleration expressed as a ratio (from 0 ~ 1) of the vehicle's maximum lateral acceleration
|
|
const float lateral_accel_ratio = constrain_float(fabsf(target_lateral_accel_G / (g.turn_max_g * GRAVITY_MSS)), 0.0f, 1.0f);
|
|
|
|
// calculate a lateral acceleration based speed scaling
|
|
const float lateral_accel_speed_scaling = 1.0f - lateral_accel_ratio * yaw_error_ratio;
|
|
|
|
// calculate a pivot steering based speed scaling (default to no reduction)
|
|
float pivot_speed_scaling = 1.0f;
|
|
if (rover.use_pivot_steering(yaw_error_cd)) {
|
|
pivot_speed_scaling = 0.0f;
|
|
}
|
|
|
|
// scaled speed
|
|
float speed_scaled = desired_speed * MIN(lateral_accel_speed_scaling, pivot_speed_scaling);
|
|
|
|
// limit speed based on distance to waypoint and max acceleration/deceleration
|
|
if (is_positive(distance_to_waypoint) && is_positive(attitude_control.get_accel_max())) {
|
|
const float speed_max = safe_sqrt(2.0f * distance_to_waypoint * attitude_control.get_accel_max() + sq(_desired_speed_final));
|
|
speed_scaled = constrain_float(speed_scaled, -speed_max, speed_max);
|
|
}
|
|
|
|
// return minimum speed
|
|
return speed_scaled;
|
|
}
|
|
|
|
// calculate the lateral acceleration target to cause the vehicle to drive along the path from origin to destination
|
|
// this function update lateral_acceleration and _yaw_error_cd members
|
|
void Mode::calc_steering_to_waypoint(const struct Location &origin, const struct Location &destination, bool reversed)
|
|
{
|
|
// Calculate the required turn of the wheels
|
|
// negative error = left turn
|
|
// positive error = right turn
|
|
rover.nav_controller->set_reverse(reversed);
|
|
rover.nav_controller->update_waypoint(origin, destination);
|
|
lateral_acceleration = rover.nav_controller->lateral_acceleration();
|
|
if (reversed) {
|
|
_yaw_error_cd = wrap_180_cd(rover.nav_controller->target_bearing_cd() - ahrs.yaw_sensor + 18000);
|
|
} else {
|
|
_yaw_error_cd = wrap_180_cd(rover.nav_controller->target_bearing_cd() - ahrs.yaw_sensor);
|
|
}
|
|
if (rover.use_pivot_steering(_yaw_error_cd)) {
|
|
if (_yaw_error_cd >= 0.0f) {
|
|
lateral_acceleration = g.turn_max_g * GRAVITY_MSS;
|
|
} else {
|
|
lateral_acceleration = -g.turn_max_g * GRAVITY_MSS;
|
|
}
|
|
}
|
|
|
|
// call lateral acceleration to steering controller
|
|
calc_steering_from_lateral_acceleration(reversed);
|
|
}
|
|
|
|
/*
|
|
calculate steering output given lateral_acceleration
|
|
*/
|
|
void Mode::calc_steering_from_lateral_acceleration(bool reversed)
|
|
{
|
|
// add obstacle avoidance response to lateral acceleration target
|
|
if (!reversed) {
|
|
lateral_acceleration += (rover.obstacle.turn_angle / 45.0f) * g.turn_max_g;
|
|
}
|
|
|
|
// constrain to max G force
|
|
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g * GRAVITY_MSS, g.turn_max_g * GRAVITY_MSS);
|
|
|
|
// send final steering command to motor library
|
|
float steering_out = attitude_control.get_steering_out_lat_accel(lateral_acceleration, g2.motors.have_skid_steering(), g2.motors.limit.steer_left, g2.motors.limit.steer_right, reversed);
|
|
g2.motors.set_steering(steering_out * 4500.0f);
|
|
}
|