ardupilot/ArduSub/test.cpp
2017-02-27 15:18:34 +09:00

278 lines
7.6 KiB
C++

#include "Sub.h"
#if CLI_ENABLED == ENABLED
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
static const struct Menu::command test_menu_commands[] = {
#if HIL_MODE == HIL_MODE_DISABLED
{"baro", MENU_FUNC(test_baro)},
#endif
{"compass", MENU_FUNC(test_compass)},
{"ins", MENU_FUNC(test_ins)},
{"optflow", MENU_FUNC(test_optflow)},
{"relay", MENU_FUNC(test_relay)},
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
{"shell", MENU_FUNC(test_shell)},
#endif
#if HIL_MODE == HIL_MODE_DISABLED
{"rangefinder", MENU_FUNC(test_rangefinder)},
#endif
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
int8_t Sub::test_mode(uint8_t argc, const Menu::arg *argv)
{
test_menu.run();
return 0;
}
#if HIL_MODE == HIL_MODE_DISABLED
int8_t Sub::test_baro(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
init_barometer(true);
while (1) {
hal.scheduler->delay(100);
read_barometer();
if (!barometer.healthy()) {
cliSerial->println("not healthy");
} else {
cliSerial->printf("Alt: %0.2fm, Raw: %f Temperature: %.1f\n",
(double)(baro_alt / 100.0f),
(double)barometer.get_pressure(),
(double)barometer.get_temperature());
}
if (cliSerial->available() > 0) {
return (0);
}
}
return 0;
}
#endif
int8_t Sub::test_compass(uint8_t argc, const Menu::arg *argv)
{
uint8_t delta_ms_fast_loop;
uint8_t medium_loopCounter = 0;
if (!g.compass_enabled) {
cliSerial->printf("Compass: ");
print_enabled(false);
return (0);
}
if (!compass.init()) {
cliSerial->println("Compass initialisation failed!");
return 0;
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_compass(&compass);
#if OPTFLOW == ENABLED
ahrs.set_optflow(&optflow);
#endif
report_compass();
// we need the AHRS initialised for this test
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
int16_t counter = 0;
float heading = 0;
print_hit_enter();
while (1) {
hal.scheduler->delay(20);
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
G_Dt = (float)delta_ms_fast_loop / 1000.0f; // used by DCM integrator
fast_loopTimer = millis();
// INS
// ---
ahrs.update();
medium_loopCounter++;
if (medium_loopCounter == 5) {
if (compass.read()) {
// Calculate heading
const Matrix3f &m = ahrs.get_rotation_body_to_ned();
heading = compass.calculate_heading(m);
compass.learn_offsets();
}
medium_loopCounter = 0;
}
counter++;
if (counter>20) {
if (compass.healthy()) {
const Vector3f &mag_ofs = compass.get_offsets();
const Vector3f &mag = compass.get_field();
cliSerial->printf("Heading: %d, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n",
(int)(wrap_360_cd(ToDeg(heading) * 100)) /100,
(double)mag.x,
(double)mag.y,
(double)mag.z,
(double)mag_ofs.x,
(double)mag_ofs.y,
(double)mag_ofs.z);
} else {
cliSerial->println("compass not healthy");
}
counter=0;
}
}
if (cliSerial->available() > 0) {
break;
}
}
// save offsets. This allows you to get sane offset values using
// the CLI before you go flying.
cliSerial->println("saving offsets");
compass.save_offsets();
return (0);
}
int8_t Sub::test_ins(uint8_t argc, const Menu::arg *argv)
{
Vector3f gyro, accel;
print_hit_enter();
cliSerial->printf("INS\n");
hal.scheduler->delay(1000);
ahrs.init();
ins.init(scheduler.get_loop_rate_hz());
cliSerial->printf("...done\n");
hal.scheduler->delay(50);
while (1) {
ins.update();
gyro = ins.get_gyro();
accel = ins.get_accel();
float test = accel.length() / GRAVITY_MSS;
cliSerial->printf("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %7.4f \n",
(double)accel.x, (double)accel.y, (double)accel.z,
(double)gyro.x, (double)gyro.y, (double)gyro.z,
(double)test);
hal.scheduler->delay(40);
if (cliSerial->available() > 0) {
return (0);
}
}
}
int8_t Sub::test_optflow(uint8_t argc, const Menu::arg *argv)
{
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
cliSerial->printf("dev id: %d\t",(int)optflow.device_id());
print_hit_enter();
while (1) {
hal.scheduler->delay(200);
optflow.update();
const Vector2f& flowRate = optflow.flowRate();
cliSerial->printf("flowX : %7.4f\t flowY : %7.4f\t flow qual : %d\n",
(double)flowRate.x,
(double)flowRate.y,
(int)optflow.quality());
if (cliSerial->available() > 0) {
return (0);
}
}
} else {
cliSerial->printf("OptFlow: ");
print_enabled(false);
}
return (0);
#else
return (0);
#endif // OPTFLOW == ENABLED
}
int8_t Sub::test_relay(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
while (1) {
cliSerial->printf("Relay on\n");
relay.on(0);
hal.scheduler->delay(3000);
if (cliSerial->available() > 0) {
return (0);
}
cliSerial->printf("Relay off\n");
relay.off(0);
hal.scheduler->delay(3000);
if (cliSerial->available() > 0) {
return (0);
}
}
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
/*
* run a debug shell
*/
int8_t Sub::test_shell(uint8_t argc, const Menu::arg *argv)
{
hal.util->run_debug_shell(cliSerial);
return 0;
}
#endif
#if HIL_MODE == HIL_MODE_DISABLED
/*
* test the rangefinders
*/
int8_t Sub::test_rangefinder(uint8_t argc, const Menu::arg *argv)
{
#if RANGEFINDER_ENABLED == ENABLED
rangefinder.init();
cliSerial->printf("RangeFinder: %d devices detected\n", rangefinder.num_sensors());
print_hit_enter();
while (1) {
hal.scheduler->delay(100);
rangefinder.update();
for (uint8_t i=0; i<rangefinder.num_sensors(); i++) {
cliSerial->printf("Dev%d: status %d distance_cm %d\n",
(int)i,
(int)rangefinder.status(i),
(int)rangefinder.distance_cm(i));
}
if (cliSerial->available() > 0) {
return (0);
}
}
#endif
return (0);
}
#endif
void Sub::print_hit_enter()
{
cliSerial->printf("Hit Enter to exit.\n\n");
}
#endif // CLI_ENABLED