mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 08:28:30 -04:00
127 lines
5.5 KiB
C++
127 lines
5.5 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
This class inherits from AC_AttitudeControl_Multi and provides functionality
|
|
specific to tailsitter quadplanes.
|
|
1) "body-frame" roll control mode for all tailsitters
|
|
2) a relax_attitude_controller method needed for coping with vectored tailsitters
|
|
*/
|
|
#include "AC_AttitudeControl_TS.h"
|
|
|
|
void AC_AttitudeControl_TS::relax_attitude_controllers(bool exclude_pitch)
|
|
{
|
|
// If exclude_pitch: relax roll and yaw rate controller outputs only,
|
|
// leaving pitch controller active to let TVBS motors tilt up while in throttle_wait
|
|
if (exclude_pitch) {
|
|
// Get the current attitude quaternion
|
|
Quaternion current_attitude;
|
|
_ahrs.get_quat_body_to_ned(current_attitude);
|
|
|
|
Vector3f current_eulers;
|
|
current_attitude.to_euler(current_eulers.x, current_eulers.y, current_eulers.z);
|
|
|
|
// set target attitude to zero pitch with (approximate) current roll and yaw
|
|
// by rotating the current_attitude quaternion by the error in desired pitch
|
|
Quaternion pitch_rotation;
|
|
pitch_rotation.from_axis_angle(Vector3f(0, -1, 0), current_eulers.y);
|
|
_attitude_target = current_attitude * pitch_rotation;
|
|
_attitude_target.normalize();
|
|
_attitude_target.to_euler(_euler_angle_target.x, _euler_angle_target.y, _euler_angle_target.z);
|
|
_attitude_ang_error = current_attitude.inverse() * _attitude_target;
|
|
|
|
// Initialize the roll and yaw angular rate variables to the current rate
|
|
_ang_vel_target = _ahrs.get_gyro();
|
|
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target);
|
|
_ang_vel_body.x = _ahrs.get_gyro().x;
|
|
_ang_vel_body.z = _ahrs.get_gyro().z;
|
|
|
|
// Reset the roll and yaw I terms
|
|
get_rate_roll_pid().reset_I();
|
|
get_rate_yaw_pid().reset_I();
|
|
} else {
|
|
// relax all attitude controllers
|
|
AC_AttitudeControl::relax_attitude_controllers();
|
|
}
|
|
}
|
|
|
|
// Command euler yaw rate and pitch angle with roll angle specified in body frame
|
|
// (used only by tailsitter quadplanes)
|
|
// If plane_controls is true, swap the effects of roll and yaw as euler pitch approaches 90 degrees
|
|
void AC_AttitudeControl_TS::input_euler_rate_yaw_euler_angle_pitch_bf_roll(bool plane_controls, float body_roll_cd, float euler_pitch_cd, float euler_yaw_rate_cds)
|
|
{
|
|
// Convert from centidegrees on public interface to radians
|
|
float euler_yaw_rate = radians(euler_yaw_rate_cds*0.01f);
|
|
float euler_pitch = radians(constrain_float(euler_pitch_cd * 0.01f, -90.0f, 90.0f));
|
|
float body_roll = radians(-body_roll_cd * 0.01f);
|
|
|
|
const float cpitch = cosf(euler_pitch);
|
|
const float spitch = fabsf(sinf(euler_pitch));
|
|
|
|
// Compute attitude error
|
|
Quaternion attitude_body;
|
|
Quaternion error_quat;
|
|
_ahrs.get_quat_body_to_ned(attitude_body);
|
|
error_quat = attitude_body.inverse() * _attitude_target;
|
|
Vector3f att_error;
|
|
error_quat.to_axis_angle(att_error);
|
|
|
|
// update heading
|
|
float yaw_rate = euler_yaw_rate;
|
|
if (plane_controls) {
|
|
yaw_rate = (euler_yaw_rate * spitch) + (body_roll * cpitch);
|
|
}
|
|
// limit yaw error
|
|
float yaw_error = fabsf(att_error.z);
|
|
float error_ratio = yaw_error / M_PI_2;
|
|
if (error_ratio > 1) {
|
|
yaw_rate /= (error_ratio * error_ratio);
|
|
}
|
|
_euler_angle_target.z = wrap_PI(_euler_angle_target.z + yaw_rate * _dt);
|
|
|
|
// init attitude target to desired euler yaw and pitch with zero roll
|
|
_attitude_target.from_euler(0, euler_pitch, _euler_angle_target.z);
|
|
|
|
// apply body-frame yaw/roll (this is roll/yaw for a tailsitter in forward flight)
|
|
// rotate body_roll axis by |sin(pitch angle)|
|
|
Quaternion bf_roll_Q;
|
|
bf_roll_Q.from_axis_angle(Vector3f(0, 0, spitch * body_roll));
|
|
|
|
// rotate body_yaw axis by cos(pitch angle)
|
|
Quaternion bf_yaw_Q;
|
|
if (plane_controls) {
|
|
bf_yaw_Q.from_axis_angle(Vector3f(cpitch, 0, 0), euler_yaw_rate);
|
|
} else {
|
|
bf_yaw_Q.from_axis_angle(Vector3f(-cpitch * body_roll, 0, 0));
|
|
}
|
|
_attitude_target = _attitude_target * bf_roll_Q * bf_yaw_Q;
|
|
|
|
// _euler_angle_target roll and pitch: Note: roll/yaw will be indeterminate when pitch is near +/-90
|
|
// These should be used only for logging target eulers, with the caveat noted above.
|
|
// Also note that _attitude_target.from_euler() should only be used in special circumstances
|
|
// such as when attitude is specified directly in terms of Euler angles.
|
|
// _euler_angle_target.x = _attitude_target.get_euler_roll();
|
|
// _euler_angle_target.y = euler_pitch;
|
|
|
|
// Set rate feedforward requests to zero
|
|
_euler_rate_target.zero();
|
|
_ang_vel_target.zero();
|
|
|
|
// Compute attitude error
|
|
error_quat = attitude_body.inverse() * _attitude_target;
|
|
error_quat.to_axis_angle(att_error);
|
|
|
|
// Compute the angular velocity target from the attitude error
|
|
_ang_vel_body = update_ang_vel_target_from_att_error(att_error);
|
|
}
|