mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 22:48:29 -04:00
467 lines
16 KiB
C++
467 lines
16 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Authored by Jonathan Challinger, 3D Robotics Inc.
|
|
|
|
#include "AccelCalibrator.h"
|
|
#include <stdio.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
const extern AP_HAL::HAL& hal;
|
|
/*
|
|
* TODO
|
|
* - time out when not receiving samples
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////
|
|
///////////////////// PUBLIC INTERFACE /////////////////////
|
|
////////////////////////////////////////////////////////////
|
|
|
|
AccelCalibrator::AccelCalibrator() :
|
|
_conf_tolerance(ACCEL_CAL_TOLERANCE),
|
|
_sample_buffer(nullptr)
|
|
{
|
|
clear();
|
|
}
|
|
/*
|
|
Select options, initialise variables and initiate accel calibration
|
|
Options:
|
|
Fit Type: Will assume that if accelerometer static samples around all possible orientatio
|
|
are spread in space will cover a surface of AXIS_ALIGNED_ELLIPSOID or any general
|
|
ELLIPSOID as chosen
|
|
|
|
Num Samples: Number of samples user should will be gathering, please note that with type of surface
|
|
chosen the minimum number of samples required will vary, for instance in the case of AXIS
|
|
ALIGNED ELLIPSOID atleast 6 distinct samples are required while for generic ELLIPSOIDAL fit
|
|
which will include calculation of offdiagonal parameters too requires atleast 8 parameters
|
|
to form a distinct ELLIPSOID
|
|
|
|
Sample Time: Time over which the samples will be gathered and averaged to add to a single sample for least
|
|
square regression
|
|
|
|
offset,diag,offdiag: initial parameter values for LSQ calculation
|
|
*/
|
|
void AccelCalibrator::start(enum accel_cal_fit_type_t fit_type, uint8_t num_samples, float sample_time) {
|
|
start(fit_type, num_samples, sample_time, Vector3f(0,0,0), Vector3f(1,1,1), Vector3f(0,0,0));
|
|
}
|
|
|
|
void AccelCalibrator::start(enum accel_cal_fit_type_t fit_type, uint8_t num_samples, float sample_time, Vector3f offset, Vector3f diag, Vector3f offdiag) {
|
|
if (_status == ACCEL_CAL_FAILED || _status == ACCEL_CAL_SUCCESS) {
|
|
clear();
|
|
}
|
|
if (_status != ACCEL_CAL_NOT_STARTED) {
|
|
return;
|
|
}
|
|
|
|
_conf_num_samples = num_samples;
|
|
_conf_sample_time = sample_time;
|
|
_conf_fit_type = fit_type;
|
|
|
|
const uint16_t faces = 2*_conf_num_samples-4;
|
|
const float a = (4.0f * M_PI / (3.0f * faces)) + M_PI / 3.0f;
|
|
const float theta = 0.5f * acosf(cosf(a) / (1.0f - cosf(a)));
|
|
_min_sample_dist = GRAVITY_MSS * 2*sinf(theta/2);
|
|
|
|
_param.s.offset = offset;
|
|
_param.s.diag = diag;
|
|
_param.s.offdiag = offdiag;
|
|
|
|
switch (_conf_fit_type) {
|
|
case ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID:
|
|
if (_conf_num_samples < 6) {
|
|
set_status(ACCEL_CAL_FAILED);
|
|
return;
|
|
}
|
|
break;
|
|
case ACCEL_CAL_ELLIPSOID:
|
|
if (_conf_num_samples < 8) {
|
|
set_status(ACCEL_CAL_FAILED);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
set_status(ACCEL_CAL_WAITING_FOR_ORIENTATION);
|
|
}
|
|
|
|
|
|
// set Accel calibrator status to make itself ready for future accel cals
|
|
void AccelCalibrator::clear() {
|
|
set_status(ACCEL_CAL_NOT_STARTED);
|
|
}
|
|
|
|
// returns true if accel calibrator is running
|
|
bool AccelCalibrator::running() {
|
|
return _status == ACCEL_CAL_WAITING_FOR_ORIENTATION || _status == ACCEL_CAL_COLLECTING_SAMPLE;
|
|
}
|
|
|
|
// set Accel calibrator to start collecting samples in the next cycle
|
|
void AccelCalibrator::collect_sample() {
|
|
set_status(ACCEL_CAL_COLLECTING_SAMPLE);
|
|
}
|
|
|
|
// collect and avg sample to be passed onto LSQ estimator after all requisite orientations are done
|
|
void AccelCalibrator::new_sample(const Vector3f& delta_velocity, float dt) {
|
|
if (_status != ACCEL_CAL_COLLECTING_SAMPLE) {
|
|
return;
|
|
}
|
|
|
|
if (_samples_collected >= _conf_num_samples) {
|
|
set_status(ACCEL_CAL_FAILED);
|
|
return;
|
|
}
|
|
|
|
_sample_buffer[_samples_collected].delta_velocity += delta_velocity;
|
|
_sample_buffer[_samples_collected].delta_time += dt;
|
|
|
|
_last_samp_frag_collected_ms = AP_HAL::millis();
|
|
|
|
if (_sample_buffer[_samples_collected].delta_time > _conf_sample_time) {
|
|
Vector3f sample = _sample_buffer[_samples_collected].delta_velocity/_sample_buffer[_samples_collected].delta_time;
|
|
if (!accept_sample(sample)) {
|
|
set_status(ACCEL_CAL_FAILED);
|
|
return;
|
|
}
|
|
|
|
_samples_collected++;
|
|
|
|
if (_samples_collected >= _conf_num_samples) {
|
|
run_fit(MAX_ITERATIONS, _fitness);
|
|
|
|
if (_fitness < _conf_tolerance && accept_result()) {
|
|
set_status(ACCEL_CAL_SUCCESS);
|
|
} else {
|
|
set_status(ACCEL_CAL_FAILED);
|
|
}
|
|
} else {
|
|
set_status(ACCEL_CAL_WAITING_FOR_ORIENTATION);
|
|
}
|
|
}
|
|
}
|
|
|
|
// determines if the result is acceptable
|
|
bool AccelCalibrator::accept_result() const {
|
|
if (fabsf(_param.s.offset.x) > GRAVITY_MSS ||
|
|
fabsf(_param.s.offset.y) > GRAVITY_MSS ||
|
|
fabsf(_param.s.offset.z) > GRAVITY_MSS ||
|
|
_param.s.diag.x < 0.8f || _param.s.diag.x > 1.2f ||
|
|
_param.s.diag.y < 0.8f || _param.s.diag.y > 1.2f ||
|
|
_param.s.diag.z < 0.8f || _param.s.diag.z > 1.2f) {
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// interface for LSq estimator to read sample buffer sent after conversion from delta velocity
|
|
// to averaged acc over time
|
|
bool AccelCalibrator::get_sample(uint8_t i, Vector3f& s) const {
|
|
if (i >= _samples_collected) {
|
|
return false;
|
|
}
|
|
s = _sample_buffer[i].delta_velocity / _sample_buffer[i].delta_time;
|
|
return true;
|
|
}
|
|
|
|
// returns truen and sample corrected with diag offdiag parameters as calculated by LSq estimation procedure
|
|
// returns false if no correct parameter exists to be applied along with existing sample without corrections
|
|
bool AccelCalibrator::get_sample_corrected(uint8_t i, Vector3f& s) const {
|
|
if (_status != ACCEL_CAL_SUCCESS || !get_sample(i,s)) {
|
|
return false;
|
|
}
|
|
|
|
Matrix3f M (
|
|
_param.s.diag.x , _param.s.offdiag.x , _param.s.offdiag.y,
|
|
_param.s.offdiag.x , _param.s.diag.y , _param.s.offdiag.z,
|
|
_param.s.offdiag.y , _param.s.offdiag.z , _param.s.diag.z
|
|
);
|
|
|
|
s = M*(s+_param.s.offset);
|
|
|
|
return true;
|
|
}
|
|
|
|
// checks if no new sample has been received for considerable amount of time
|
|
void AccelCalibrator::check_for_timeout() {
|
|
const uint32_t timeout = _conf_sample_time*2*1000 + 500;
|
|
if (_status == ACCEL_CAL_COLLECTING_SAMPLE && AP_HAL::millis() - _last_samp_frag_collected_ms > timeout) {
|
|
set_status(ACCEL_CAL_FAILED);
|
|
}
|
|
}
|
|
|
|
// returns spherical fit paramteters
|
|
void AccelCalibrator::get_calibration(Vector3f& offset) const {
|
|
offset = -_param.s.offset;
|
|
}
|
|
|
|
// returns axis aligned ellipsoidal fit parameters
|
|
void AccelCalibrator::get_calibration(Vector3f& offset, Vector3f& diag) const {
|
|
offset = -_param.s.offset;
|
|
diag = _param.s.diag;
|
|
}
|
|
|
|
// returns generic ellipsoidal fit parameters
|
|
void AccelCalibrator::get_calibration(Vector3f& offset, Vector3f& diag, Vector3f& offdiag) const {
|
|
offset = -_param.s.offset;
|
|
diag = _param.s.diag;
|
|
offdiag = _param.s.offdiag;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
////////////////////// PRIVATE METHODS //////////////////////
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
The sample acceptance distance is determined as follows:
|
|
For any regular polyhedron with triangular faces, the angle theta subtended
|
|
by two closest points is defined as
|
|
|
|
theta = arccos(cos(A)/(1-cos(A)))
|
|
|
|
Where:
|
|
A = (4pi/F + pi)/3
|
|
and
|
|
F = 2V - 4 is the number of faces for the polyhedron in consideration,
|
|
which depends on the number of vertices V
|
|
|
|
The above equation was proved after solving for spherical triangular excess
|
|
and related equations.
|
|
*/
|
|
bool AccelCalibrator::accept_sample(const Vector3f& sample)
|
|
{
|
|
if (_sample_buffer == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
for(uint8_t i=0; i < _samples_collected; i++) {
|
|
Vector3f other_sample;
|
|
get_sample(i, other_sample);
|
|
|
|
if ((other_sample - sample).length() < _min_sample_dist){
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// sets status of calibrator and takes appropriate actions
|
|
void AccelCalibrator::set_status(enum accel_cal_status_t status) {
|
|
switch (status) {
|
|
case ACCEL_CAL_NOT_STARTED:
|
|
//Calibrator not started
|
|
_status = ACCEL_CAL_NOT_STARTED;
|
|
|
|
_samples_collected = 0;
|
|
if (_sample_buffer != nullptr) {
|
|
free(_sample_buffer);
|
|
_sample_buffer = nullptr;
|
|
}
|
|
|
|
break;
|
|
|
|
case ACCEL_CAL_WAITING_FOR_ORIENTATION:
|
|
//Callibrator has been started and is waiting for user to ack after orientation setting
|
|
if (!running()) {
|
|
_samples_collected = 0;
|
|
if (_sample_buffer == nullptr) {
|
|
_sample_buffer = (struct AccelSample*)calloc(_conf_num_samples,sizeof(struct AccelSample));
|
|
if (_sample_buffer == nullptr) {
|
|
set_status(ACCEL_CAL_FAILED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (_samples_collected >= _conf_num_samples) {
|
|
break;
|
|
}
|
|
_status = ACCEL_CAL_WAITING_FOR_ORIENTATION;
|
|
break;
|
|
|
|
case ACCEL_CAL_COLLECTING_SAMPLE:
|
|
// Calibrator is waiting on collecting samples from acceleromter for amount of
|
|
// time as requested by user/GCS
|
|
if (_status != ACCEL_CAL_WAITING_FOR_ORIENTATION) {
|
|
break;
|
|
}
|
|
_last_samp_frag_collected_ms = AP_HAL::millis();
|
|
_status = ACCEL_CAL_COLLECTING_SAMPLE;
|
|
break;
|
|
|
|
case ACCEL_CAL_SUCCESS:
|
|
// Calibrator has successfully fitted the samples to user requested surface model
|
|
// and has passed tolerance test
|
|
if (_status != ACCEL_CAL_COLLECTING_SAMPLE) {
|
|
break;
|
|
}
|
|
|
|
_status = ACCEL_CAL_SUCCESS;
|
|
break;
|
|
|
|
case ACCEL_CAL_FAILED:
|
|
// Calibration has failed with reasons that can range from
|
|
// bad sample data leading to faillure in tolerance test to lack of distinct samples
|
|
if (_status == ACCEL_CAL_NOT_STARTED) {
|
|
break;
|
|
}
|
|
|
|
_status = ACCEL_CAL_FAILED;
|
|
break;
|
|
};
|
|
}
|
|
|
|
/*
|
|
Run Gauss Newton fitting algorithm over the sample space and come up with offsets, diagonal/scale factors
|
|
and crosstalk/offdiagonal parameters
|
|
*/
|
|
void AccelCalibrator::run_fit(uint8_t max_iterations, float& fitness)
|
|
{
|
|
if (_sample_buffer == nullptr) {
|
|
return;
|
|
}
|
|
fitness = calc_mean_squared_residuals(_param.s);
|
|
float min_fitness = fitness;
|
|
union param_u fit_param = _param;
|
|
uint8_t num_iterations = 0;
|
|
|
|
while(num_iterations < max_iterations) {
|
|
float JTJ[ACCEL_CAL_MAX_NUM_PARAMS*ACCEL_CAL_MAX_NUM_PARAMS] {};
|
|
VectorP JTFI;
|
|
|
|
for(uint16_t k = 0; k<_samples_collected; k++) {
|
|
Vector3f sample;
|
|
get_sample(k, sample);
|
|
|
|
VectorN<float,ACCEL_CAL_MAX_NUM_PARAMS> jacob;
|
|
|
|
calc_jacob(sample, fit_param.s, jacob);
|
|
|
|
for(uint8_t i = 0; i < get_num_params(); i++) {
|
|
// compute JTJ
|
|
for(uint8_t j = 0; j < get_num_params(); j++) {
|
|
JTJ[i*get_num_params()+j] += jacob[i] * jacob[j];
|
|
}
|
|
// compute JTFI
|
|
JTFI[i] += jacob[i] * calc_residual(sample, fit_param.s);
|
|
}
|
|
}
|
|
|
|
if (!mat_inverse(JTJ, JTJ, get_num_params())) {
|
|
return;
|
|
}
|
|
|
|
for(uint8_t row=0; row < get_num_params(); row++) {
|
|
for(uint8_t col=0; col < get_num_params(); col++) {
|
|
fit_param.a[row] -= JTFI[col] * JTJ[row*get_num_params()+col];
|
|
}
|
|
}
|
|
|
|
fitness = calc_mean_squared_residuals(fit_param.s);
|
|
|
|
if (isnan(fitness) || isinf(fitness)) {
|
|
return;
|
|
}
|
|
|
|
if (fitness < min_fitness) {
|
|
min_fitness = fitness;
|
|
_param = fit_param;
|
|
}
|
|
|
|
num_iterations++;
|
|
}
|
|
}
|
|
|
|
// calculates residual from samples(corrected using supplied parameter) to gravity
|
|
// used to create Fitness column matrix
|
|
float AccelCalibrator::calc_residual(const Vector3f& sample, const struct param_t& params) const {
|
|
Matrix3f M (
|
|
params.diag.x , params.offdiag.x , params.offdiag.y,
|
|
params.offdiag.x , params.diag.y , params.offdiag.z,
|
|
params.offdiag.y , params.offdiag.z , params.diag.z
|
|
);
|
|
return GRAVITY_MSS - (M*(sample+params.offset)).length();
|
|
}
|
|
|
|
// calculated the total mean squared fitness of all the collected samples using parameters
|
|
// converged to LSq estimator so far
|
|
float AccelCalibrator::calc_mean_squared_residuals() const
|
|
{
|
|
return calc_mean_squared_residuals(_param.s);
|
|
}
|
|
|
|
// calculated the total mean squared fitness of all the collected samples using parameters
|
|
// supplied
|
|
float AccelCalibrator::calc_mean_squared_residuals(const struct param_t& params) const
|
|
{
|
|
if (_sample_buffer == nullptr || _samples_collected == 0) {
|
|
return 1.0e30f;
|
|
}
|
|
float sum = 0.0f;
|
|
for(uint16_t i=0; i < _samples_collected; i++){
|
|
Vector3f sample;
|
|
get_sample(i, sample);
|
|
float resid = calc_residual(sample, params);
|
|
sum += sq(resid);
|
|
}
|
|
sum /= _samples_collected;
|
|
return sum;
|
|
}
|
|
|
|
// calculate jacobian, a matrix that defines relation to variation in fitness with variation in each of the parameters
|
|
// this is used in LSq estimator to adjust variation in parameter to be used for next iteration of LSq
|
|
void AccelCalibrator::calc_jacob(const Vector3f& sample, const struct param_t& params, VectorP &ret) const {
|
|
switch (_conf_fit_type) {
|
|
case ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID:
|
|
case ACCEL_CAL_ELLIPSOID: {
|
|
const Vector3f &offset = params.offset;
|
|
const Vector3f &diag = params.diag;
|
|
const Vector3f &offdiag = params.offdiag;
|
|
Matrix3f M(
|
|
diag.x , offdiag.x , offdiag.y,
|
|
offdiag.x , diag.y , offdiag.z,
|
|
offdiag.y , offdiag.z , diag.z
|
|
);
|
|
|
|
float A = (diag.x * (sample.x + offset.x)) + (offdiag.x * (sample.y + offset.y)) + (offdiag.y * (sample.z + offset.z));
|
|
float B = (offdiag.x * (sample.x + offset.x)) + (diag.y * (sample.y + offset.y)) + (offdiag.z * (sample.z + offset.z));
|
|
float C = (offdiag.y * (sample.x + offset.x)) + (offdiag.z * (sample.y + offset.y)) + (diag.z * (sample.z + offset.z));
|
|
float length = (M*(sample+offset)).length();
|
|
|
|
// 0-2: offsets
|
|
ret[0] = -1.0f * (((diag.x * A) + (offdiag.x * B) + (offdiag.y * C))/length);
|
|
ret[1] = -1.0f * (((offdiag.x * A) + (diag.y * B) + (offdiag.z * C))/length);
|
|
ret[2] = -1.0f * (((offdiag.y * A) + (offdiag.z * B) + (diag.z * C))/length);
|
|
// 3-5: diagonals
|
|
ret[3] = -1.0f * ((sample.x + offset.x) * A)/length;
|
|
ret[4] = -1.0f * ((sample.y + offset.y) * B)/length;
|
|
ret[5] = -1.0f * ((sample.z + offset.z) * C)/length;
|
|
// 6-8: off-diagonals
|
|
ret[6] = -1.0f * (((sample.y + offset.y) * A) + ((sample.x + offset.x) * B))/length;
|
|
ret[7] = -1.0f * (((sample.z + offset.z) * A) + ((sample.x + offset.x) * C))/length;
|
|
ret[8] = -1.0f * (((sample.z + offset.z) * B) + ((sample.y + offset.y) * C))/length;
|
|
return;
|
|
}
|
|
};
|
|
}
|
|
|
|
// returns number of parameters are required for selected Fit type
|
|
uint8_t AccelCalibrator::get_num_params() const {
|
|
switch (_conf_fit_type) {
|
|
case ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID:
|
|
return 6;
|
|
case ACCEL_CAL_ELLIPSOID:
|
|
return 9;
|
|
default:
|
|
return 6;
|
|
}
|
|
}
|