mirror of https://github.com/ArduPilot/ardupilot
363 lines
11 KiB
C++
363 lines
11 KiB
C++
/*
|
|
(c) 2017 night_ghost@ykoctpa.ru
|
|
|
|
*/
|
|
#pragma GCC optimize ("O2")
|
|
|
|
#include <exti.h>
|
|
#include <timer.h>
|
|
#include "RCInput.h"
|
|
#include <pwm_in.h>
|
|
#include <AP_HAL/utility/dsm.h>
|
|
#include <AP_HAL/utility/sumd.h>
|
|
#include "sbus.h"
|
|
#include "GPIO.h"
|
|
#include "ring_buffer_pulse.h"
|
|
|
|
#include "RC_PPM_parser.h"
|
|
|
|
#include "UARTDriver.h"
|
|
#include "UART_PPM.h"
|
|
|
|
using namespace F4Light;
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
void PPM_parser::init(uint8_t ch){
|
|
memset((void *)&_val[0], 0, sizeof(_val));
|
|
_last_signal=0;
|
|
_last_change=0;
|
|
_channels=0;
|
|
|
|
channel_ctr=0;
|
|
|
|
_ch = ch + 1;
|
|
|
|
last_pulse = {0,0};
|
|
|
|
_ioc = Scheduler::register_io_completion(FUNCTOR_BIND_MEMBER(&PPM_parser::parse_pulses, void));
|
|
// TODO Panic on IOC not allocated
|
|
|
|
// callback is called on each edge so must be as fast as possible
|
|
Revo_handler h = { .mp = FUNCTOR_BIND_MEMBER(&PPM_parser::start_ioc, void) };
|
|
pwm_setHandler(h.h, _ch-1);
|
|
|
|
sbus_state[0].mode=BOARD_RC_SBUS;
|
|
sbus_state[1].mode=BOARD_RC_SBUS_NI;
|
|
}
|
|
|
|
|
|
void PPM_parser::start_ioc(void){
|
|
Scheduler::do_io_completion(_ioc);
|
|
}
|
|
|
|
void PPM_parser::parse_pulses(void){
|
|
if(_ch==0) return; // not initialized
|
|
|
|
Pulse p;
|
|
#if 0 // [ statistics to tune memory usage
|
|
uint16_t np = getPPM_count(_ch);
|
|
if(np>RCInput::max_num_pulses) RCInput::max_num_pulses=np;
|
|
#endif //]
|
|
|
|
while( getPPM_Pulse(&p, _ch-1)){
|
|
rxIntRC(last_pulse.length, p.length, p.state);
|
|
last_pulse = p;
|
|
}
|
|
}
|
|
|
|
|
|
void PPM_parser::rxIntRC(uint16_t last_value, uint16_t value, bool state)
|
|
{
|
|
|
|
if(state) { // was 1 so falling
|
|
if(_rc_mode==BOARD_RC_NONE){
|
|
_process_ppmsum_pulse( (last_value + value) >>1 ); // process PPM only if no protocols detected
|
|
}
|
|
|
|
if((_rc_mode &~BOARD_RC_SBUS_NI) == 0){
|
|
// test for non-inverted SBUS in 2nd memory structures
|
|
_process_sbus_pulse(last_value>>1, value>>1, sbus_state[1]); // was 1 so now is length of 1, last is a length of 0
|
|
}
|
|
|
|
} else { // was 0 so rising
|
|
|
|
if((_rc_mode & ~BOARD_RC_SBUS) == 0){
|
|
// try treat as SBUS (inverted)
|
|
// SBUS protocols detection occures on the beginning of start bit of next frame
|
|
_process_sbus_pulse(value>>1, last_value>>1, sbus_state[0]); // was 0 so now is length of 0, last is a length of 1
|
|
}
|
|
|
|
|
|
if((_rc_mode & ~(BOARD_RC_DSM | BOARD_RC_SUMD)) == 0){
|
|
// try treat as DSM or SUMD. Detection occures on the end of stop bit
|
|
_process_dsm_pulse(value>>1, last_value>>1);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
bool PPM_parser::_process_ppmsum_pulse(uint16_t value)
|
|
{
|
|
if (value >= 2700) { // Frame synchronization
|
|
if( channel_ctr >= F4Light_RC_INPUT_MIN_CHANNELS ) {
|
|
_channels = channel_ctr;
|
|
}
|
|
channel_ctr = 0;
|
|
_got_ppm=true;
|
|
|
|
return true;
|
|
} else if(value > 700 && value < 2300) {
|
|
if (channel_ctr < F4Light_RC_INPUT_NUM_CHANNELS) {
|
|
_last_signal = systick_uptime();
|
|
if(_val[channel_ctr] != value) _last_change = _last_signal;
|
|
_val[channel_ctr] = value;
|
|
|
|
channel_ctr++;
|
|
if (channel_ctr >= F4Light_RC_INPUT_NUM_CHANNELS) {
|
|
_channels = F4Light_RC_INPUT_NUM_CHANNELS;
|
|
}
|
|
}
|
|
return true;
|
|
} else { // try another protocols
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
process a SBUS input pulse of the given width
|
|
|
|
pulses are captured on each edges and SBUS parser called on rising edge - beginning of start bit
|
|
*/
|
|
|
|
void PPM_parser::_process_sbus_pulse(uint16_t width_s0, uint16_t width_s1, F4Light::PPM_parser::SbusState &state)
|
|
{
|
|
// convert to bit widths, allowing for up to 4usec error, assuming 100000 bps - inverted
|
|
uint16_t bits_s0 = (width_s0+4) / 10;
|
|
uint16_t bits_s1 = (width_s1+4) / 10;
|
|
|
|
uint8_t byte_ofs = state.bit_ofs/12;
|
|
uint8_t bit_ofs = state.bit_ofs%12;
|
|
uint16_t nlow;
|
|
|
|
if (bits_s1 == 0 || bits_s0 == 0) { // invalid data
|
|
goto reset;
|
|
}
|
|
|
|
if (bits_s1+bit_ofs > 10) { // invalid data as last two bits must be stop bits
|
|
goto reset;
|
|
}
|
|
|
|
|
|
// pull in the high bits
|
|
state.bytes[byte_ofs] |= ((1U<<bits_s1)-1) << bit_ofs;
|
|
state.bit_ofs += bits_s1;
|
|
bit_ofs += bits_s1;
|
|
|
|
// pull in the low bits
|
|
nlow = bits_s0; // length of low bits
|
|
if (nlow + bit_ofs > 12) { // goes over byte boundary?
|
|
nlow = 12 - bit_ofs; // remaining part of byte
|
|
}
|
|
bits_s0 -= nlow; // zero bit residual
|
|
state.bit_ofs += nlow; // fill by zeros till byte end
|
|
|
|
if (state.bit_ofs == 25*12 && bits_s0 > 12) { // all frame got and was gap
|
|
// we have a full frame
|
|
uint8_t bytes[25];
|
|
uint16_t i;
|
|
|
|
for (i=0; i<25; i++) {
|
|
// get inverted data
|
|
uint16_t v = ~state.bytes[i];
|
|
|
|
if ((v & 1) != 0) { // check start bit
|
|
goto reset;
|
|
}
|
|
|
|
if ((v & 0xC00) != 0xC00) {// check stop bits
|
|
goto reset;
|
|
}
|
|
// check parity
|
|
uint8_t parity = 0, j;
|
|
for (j=1; j<=8; j++) {
|
|
parity ^= (v & (1U<<j))?1:0;
|
|
}
|
|
if (parity != (v&0x200)>>9) {
|
|
goto reset;
|
|
}
|
|
bytes[i] = ((v>>1) & 0xFF);
|
|
}
|
|
|
|
uint16_t values[F4Light_RC_INPUT_NUM_CHANNELS];
|
|
uint16_t num_values=0;
|
|
bool sbus_failsafe=false, sbus_frame_drop=false;
|
|
|
|
|
|
if (sbus_decode(bytes, values, &num_values,
|
|
&sbus_failsafe, &sbus_frame_drop,
|
|
F4Light_RC_INPUT_NUM_CHANNELS) &&
|
|
num_values >= F4Light_RC_INPUT_MIN_CHANNELS)
|
|
{
|
|
|
|
for (i=0; i<num_values; i++) {
|
|
if(_val[i] != values[i]) _last_change = systick_uptime();
|
|
_val[i] = values[i];
|
|
}
|
|
_channels = num_values;
|
|
|
|
_rc_mode = state.mode; // lock input mode, SBUS has a parity and other checks so false positive is unreal
|
|
|
|
if (!sbus_failsafe) {
|
|
_got_dsm = true;
|
|
_last_signal = systick_uptime();
|
|
}
|
|
}
|
|
goto reset_ok;
|
|
} else if (bits_s0 > 12) { // Was inter-frame gap but not full frame
|
|
goto reset;
|
|
}
|
|
return;
|
|
reset:
|
|
|
|
reset_ok:
|
|
state.bit_ofs=0;
|
|
memset(&state.bytes, 0, sizeof(state.bytes));
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
process a DSM satellite input pulse of the given width
|
|
|
|
pulses are captured on each edges and DSM parser called on falling edge - eg. beginning of start bit
|
|
*/
|
|
|
|
void PPM_parser::_process_dsm_pulse(uint16_t width_s0, uint16_t width_s1)
|
|
{
|
|
// convert to bit widths, allowing for up to 1uSec error, assuming 115200 bps
|
|
uint16_t bits_s0 = ((width_s0+4)*(uint32_t)115200) / 1000000;
|
|
uint16_t bits_s1 = ((width_s1+4)*(uint32_t)115200) / 1000000;
|
|
uint8_t bit_ofs, byte_ofs;
|
|
uint16_t nbits;
|
|
|
|
if (bits_s0 == 0 || bits_s1 == 0) {
|
|
// invalid data
|
|
goto reset;
|
|
}
|
|
|
|
byte_ofs = dsm_state.bit_ofs/10;
|
|
bit_ofs = dsm_state.bit_ofs%10;
|
|
|
|
if(byte_ofs > 15) {
|
|
// invalid data
|
|
goto reset;
|
|
}
|
|
|
|
// pull in the high bits
|
|
nbits = bits_s0;
|
|
if (nbits+bit_ofs > 10) {
|
|
nbits = 10 - bit_ofs;
|
|
}
|
|
dsm_state.bytes[byte_ofs] |= ((1U<<nbits)-1) << bit_ofs;
|
|
dsm_state.bit_ofs += nbits;
|
|
bit_ofs += nbits;
|
|
|
|
|
|
if (bits_s0 - nbits > 10) {
|
|
if (dsm_state.bit_ofs == 16*10) {
|
|
// we have a full frame
|
|
uint8_t bytes[16];
|
|
uint8_t i;
|
|
for (i=0; i<16; i++) {
|
|
// get raw data
|
|
uint16_t v = dsm_state.bytes[i];
|
|
|
|
// check start bit
|
|
if ((v & 1) != 0) {
|
|
goto reset;
|
|
}
|
|
// check stop bits
|
|
if ((v & 0x200) != 0x200) {
|
|
goto reset;
|
|
}
|
|
uint8_t bt= ((v>>1) & 0xFF);
|
|
bytes[i] = bt;
|
|
|
|
if(_rc_mode != BOARD_RC_DSM) {
|
|
// try to decode SUMD data on each byte, decoder butters frame itself.
|
|
uint16_t values[F4Light_RC_INPUT_NUM_CHANNELS];
|
|
uint8_t rssi;
|
|
uint8_t rx_count;
|
|
uint16_t channel_count;
|
|
|
|
if (sumd_decode(bt, &rssi, &rx_count, &channel_count, values, F4Light_RC_INPUT_NUM_CHANNELS) == 0) {
|
|
if (channel_count > F4Light_RC_INPUT_NUM_CHANNELS) {
|
|
continue;
|
|
}
|
|
_rc_mode = BOARD_RC_SUMD;
|
|
for (uint8_t j=0; j<channel_count; j++) {
|
|
if (values[j] != 0) {
|
|
if(_val[j] != values[j]) _last_change = systick_uptime();
|
|
_val[j] = values[j];
|
|
}
|
|
}
|
|
_channels = channel_count;
|
|
_last_signal = systick_uptime();
|
|
// _rssi = rssi;
|
|
}
|
|
}
|
|
|
|
if(_rc_mode == BOARD_RC_NONE) { // if protocol not decoded
|
|
UART_PPM::putch(bt, _ch); // push received bytes to memory queue to get via fake UARTs
|
|
}
|
|
}
|
|
if(_rc_mode != BOARD_RC_SUMD) { // try to decode buffer as DSM on full frame
|
|
uint16_t values[F4Light_RC_INPUT_NUM_CHANNELS];
|
|
uint16_t num_values=0;
|
|
if (dsm_decode(AP_HAL::micros64(), bytes, values, &num_values, F4Light_RC_INPUT_NUM_CHANNELS) &&
|
|
num_values >= F4Light_RC_INPUT_MIN_CHANNELS) {
|
|
|
|
_rc_mode = BOARD_RC_DSM; // lock input mode, DSM has a checksum so false positive is unreal
|
|
|
|
for (i=0; i<num_values; i++) {
|
|
if(_val[i] != values[i]) _last_change = systick_uptime();
|
|
_val[i] = values[i];
|
|
}
|
|
|
|
uint32_t nc=num_values+1;
|
|
if(nc>_channels)
|
|
_channels = nc;
|
|
_val[_channels-1]=bytes[0]; // rssi
|
|
_got_dsm = true;
|
|
_last_signal = systick_uptime();
|
|
}
|
|
}
|
|
}
|
|
memset(&dsm_state, 0, sizeof(dsm_state));
|
|
}
|
|
|
|
byte_ofs = dsm_state.bit_ofs/10;
|
|
bit_ofs = dsm_state.bit_ofs%10;
|
|
|
|
if (bits_s1+bit_ofs > 10) {
|
|
// invalid data
|
|
goto reset;
|
|
}
|
|
|
|
// pull in the low bits
|
|
dsm_state.bit_ofs += bits_s1;
|
|
return;
|
|
reset:
|
|
memset(&dsm_state, 0, sizeof(dsm_state));
|
|
}
|
|
|
|
|