ardupilot/libraries/DataFlash/DataFlash_File.cpp

1211 lines
33 KiB
C++

/*
DataFlash logging - file oriented variant
This uses posix file IO to create log files called logs/NN.bin in the
given directory
SD Card Rates on PixHawk:
- deletion rate seems to be ~50 files/second.
- stat seems to be ~150/second
- readdir loop of 511 entry directory ~62,000 microseconds
*/
#include <AP_HAL/AP_HAL.h>
#if HAL_OS_POSIX_IO || HAL_OS_FATFS_IO
#include "DataFlash_File.h"
#include <AP_Common/AP_Common.h>
#if HAL_OS_POSIX_IO
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <stdio.h>
#include <time.h>
#include <dirent.h>
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/param.h>
#include <sys/mount.h>
#else
#include <sys/statfs.h>
#endif
#endif
#if HAL_OS_FATFS_IO
#include <stdio.h>
#endif
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
#define MAX_LOG_FILES 500U
#define DATAFLASH_PAGE_SIZE 1024UL
/*
constructor
*/
DataFlash_File::DataFlash_File(DataFlash_Class &front,
DFMessageWriter_DFLogStart *writer,
const char *log_directory) :
DataFlash_Backend(front, writer),
_write_fd(-1),
_read_fd(-1),
_log_directory(log_directory),
_writebuf(0),
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V1)
// V1 gets IO errors with larger than 512 byte writes
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V45)
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V51)
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V52)
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V52E)
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRUBRAIN_V51)
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRUBRAIN_V52)
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRHERO_V10)
_writebuf_chunk(512),
#elif defined(CONFIG_ARCH_BOARD_VRBRAIN_V54)
_writebuf_chunk(512),
#else
_writebuf_chunk(4096),
#endif
_perf_write(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "DF_write")),
_perf_fsync(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "DF_fsync")),
_perf_errors(hal.util->perf_alloc(AP_HAL::Util::PC_COUNT, "DF_errors")),
_perf_overruns(hal.util->perf_alloc(AP_HAL::Util::PC_COUNT, "DF_overruns"))
{
df_stats_clear();
}
void DataFlash_File::Init()
{
DataFlash_Backend::Init();
// create the log directory if need be
int ret;
struct stat st;
semaphore = hal.util->new_semaphore();
if (semaphore == nullptr) {
AP_HAL::panic("Failed to create DataFlash_File semaphore");
return;
}
write_fd_semaphore = hal.util->new_semaphore();
if (write_fd_semaphore == nullptr) {
AP_HAL::panic("Failed to create DataFlash_File write_fd_semaphore");
return;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
// try to cope with an existing lowercase log directory
// name. NuttX does not handle case insensitive VFAT well
DIR *d = opendir("/fs/microsd/APM");
if (d != nullptr) {
for (struct dirent *de=readdir(d); de; de=readdir(d)) {
if (strcmp(de->d_name, "logs") == 0) {
rename("/fs/microsd/APM/logs", "/fs/microsd/APM/OLDLOGS");
break;
}
}
closedir(d);
}
#endif
const char* custom_dir = hal.util->get_custom_log_directory();
if (custom_dir != nullptr){
_log_directory = custom_dir;
}
hal.scheduler->expect_delay_ms(3000);
ret = stat(_log_directory, &st);
if (ret == -1) {
ret = mkdir(_log_directory, 0777);
}
hal.scheduler->expect_delay_ms(0);
if (ret == -1 && errno != EEXIST) {
printf("Failed to create log directory %s : %s\n", _log_directory, strerror(errno));
}
// determine and limit file backend buffersize
uint32_t bufsize = _front._params.file_bufsize;
if (bufsize > 64) {
bufsize = 64; // PixHawk has DMA limitations.
}
bufsize *= 1024;
// If we can't allocate the full size, try to reduce it until we can allocate it
while (!_writebuf.set_size(bufsize) && bufsize >= _writebuf_chunk) {
hal.console->printf("DataFlash_File: Couldn't set buffer size to=%u\n", (unsigned)bufsize);
bufsize >>= 1;
}
if (!_writebuf.get_size()) {
hal.console->printf("Out of memory for logging\n");
return;
}
hal.console->printf("DataFlash_File: buffer size=%u\n", (unsigned)bufsize);
_initialised = true;
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&DataFlash_File::_io_timer, void));
}
bool DataFlash_File::file_exists(const char *filename) const
{
struct stat st;
hal.scheduler->expect_delay_ms(3000);
if (stat(filename, &st) == -1) {
// hopefully errno==ENOENT. If some error occurs it is
// probably better to assume this file exists.
hal.scheduler->expect_delay_ms(0);
return false;
}
hal.scheduler->expect_delay_ms(0);
return true;
}
bool DataFlash_File::log_exists(const uint16_t lognum) const
{
char *filename = _log_file_name(lognum);
if (filename == nullptr) {
return false; // ?!
}
bool ret = file_exists(filename);
free(filename);
return ret;
}
void DataFlash_File::periodic_1Hz(const uint32_t now)
{
if (!io_thread_alive()) {
if (io_thread_warning_decimation_counter == 0 && _initialised) {
// we don't print this error unless we did initialise. When _initialised is set to true
// we register the IO timer callback
gcs().send_text(MAV_SEVERITY_CRITICAL, "DataFlash: stuck thread (%s)", last_io_operation);
}
if (io_thread_warning_decimation_counter++ > 57) {
io_thread_warning_decimation_counter = 0;
}
// If you try to close the file here then it will almost
// certainly block. Since this is the main thread, this is
// likely to cause a crash.
// semaphore_write_fd not taken here as if the io thread is
// dead it may not release lock...
_write_fd = -1;
_initialised = false;
}
df_stats_log();
}
void DataFlash_File::periodic_fullrate(const uint32_t now)
{
DataFlash_Backend::push_log_blocks();
}
uint32_t DataFlash_File::bufferspace_available()
{
const uint32_t space = _writebuf.space();
const uint32_t crit = critical_message_reserved_space();
return (space > crit) ? space - crit : 0;
}
// return true for CardInserted() if we successfully initialized
bool DataFlash_File::CardInserted(void) const
{
return _initialised && !_open_error;
}
// returns the amount of disk space available in _log_directory (in bytes)
// returns -1 on error
int64_t DataFlash_File::disk_space_avail()
{
#if HAL_OS_POSIX_IO
struct statfs _stats;
if (statfs(_log_directory, &_stats) < 0) {
return -1;
}
return (((int64_t)_stats.f_bavail) * _stats.f_bsize);
#elif HAL_OS_FATFS_IO
return fs_getfree();
#else
// return a fake disk space size
return 100*1000*1000UL;
#endif
}
// returns the total amount of disk space (in use + available) in
// _log_directory (in bytes).
// returns -1 on error
int64_t DataFlash_File::disk_space()
{
#if HAL_OS_POSIX_IO
struct statfs _stats;
if (statfs(_log_directory, &_stats) < 0) {
return -1;
}
return (((int64_t)_stats.f_blocks) * _stats.f_bsize);
#elif HAL_OS_FATFS_IO
return fs_gettotal();
#else
// return fake disk space size
return 200*1000*1000UL;
#endif
}
// returns the available space in _log_directory as a percentage
// returns -1.0f on error
float DataFlash_File::avail_space_percent()
{
int64_t avail = disk_space_avail();
if (avail == -1) {
return -1.0f;
}
int64_t space = disk_space();
if (space == -1) {
return -1.0f;
}
return (avail/(float)space) * 100;
}
// find_oldest_log - find oldest log in _log_directory
// returns 0 if no log was found
uint16_t DataFlash_File::find_oldest_log()
{
if (_cached_oldest_log != 0) {
return _cached_oldest_log;
}
uint16_t last_log_num = find_last_log();
if (last_log_num == 0) {
return 0;
}
uint16_t current_oldest_log = 0; // 0 is invalid
// We could count up to find_last_log(), but if people start
// relying on the min_avail_space_percent feature we could end up
// doing a *lot* of asprintf()s and stat()s
hal.scheduler->expect_delay_ms(3000);
DIR *d = opendir(_log_directory);
hal.scheduler->expect_delay_ms(0);
if (d == nullptr) {
internal_error();
return 0;
}
// we only remove files which look like xxx.BIN
hal.scheduler->expect_delay_ms(3000);
for (struct dirent *de=readdir(d); de; de=readdir(d)) {
hal.scheduler->expect_delay_ms(3000);
uint8_t length = strlen(de->d_name);
if (length < 5) {
// not long enough for \d+[.]BIN
continue;
}
if (strncmp(&de->d_name[length-4], ".BIN", 4)) {
// doesn't end in .BIN
continue;
}
uint16_t thisnum = strtoul(de->d_name, nullptr, 10);
if (thisnum > MAX_LOG_FILES) {
// ignore files above our official maximum...
continue;
}
if (current_oldest_log == 0) {
current_oldest_log = thisnum;
} else {
if (current_oldest_log <= last_log_num) {
if (thisnum > last_log_num) {
current_oldest_log = thisnum;
} else if (thisnum < current_oldest_log) {
current_oldest_log = thisnum;
}
} else { // current_oldest_log > last_log_num
if (thisnum > last_log_num) {
if (thisnum < current_oldest_log) {
current_oldest_log = thisnum;
}
}
}
}
}
closedir(d);
hal.scheduler->expect_delay_ms(0);
_cached_oldest_log = current_oldest_log;
return current_oldest_log;
}
void DataFlash_File::Prep_MinSpace()
{
if (hal.util->was_watchdog_reset()) {
// don't clear space if watchdog reset, it takes too long
return;
}
const uint16_t first_log_to_remove = find_oldest_log();
if (first_log_to_remove == 0) {
// no files to remove
return;
}
_cached_oldest_log = 0;
uint16_t log_to_remove = first_log_to_remove;
uint16_t count = 0;
do {
float avail = avail_space_percent();
if (is_equal(avail, -1.0f)) {
internal_error();
break;
}
if (avail >= min_avail_space_percent) {
break;
}
if (count++ > MAX_LOG_FILES+10) {
// *way* too many deletions going on here. Possible internal error.
internal_error();
break;
}
char *filename_to_remove = _log_file_name(log_to_remove);
if (filename_to_remove == nullptr) {
internal_error();
break;
}
if (file_exists(filename_to_remove)) {
hal.console->printf("Removing (%s) for minimum-space requirements (%.2f%% < %.0f%%)\n",
filename_to_remove, (double)avail, (double)min_avail_space_percent);
hal.scheduler->expect_delay_ms(2000);
if (unlink(filename_to_remove) == -1) {
hal.console->printf("Failed to remove %s: %s\n", filename_to_remove, strerror(errno));
free(filename_to_remove);
if (errno == ENOENT) {
// corruption - should always have a continuous
// sequence of files... however, there may be still
// files out there, so keep going.
} else {
internal_error();
break;
}
} else {
free(filename_to_remove);
}
hal.scheduler->expect_delay_ms(0);
}
log_to_remove++;
if (log_to_remove > MAX_LOG_FILES) {
log_to_remove = 1;
}
} while (log_to_remove != first_log_to_remove);
}
void DataFlash_File::Prep() {
if (!NeedPrep()) {
return;
}
if (hal.util->get_soft_armed()) {
// do not want to do any filesystem operations while we are e.g. flying
return;
}
Prep_MinSpace();
}
bool DataFlash_File::NeedPrep()
{
if (!CardInserted()) {
// should not have been called?!
return false;
}
if (avail_space_percent() < min_avail_space_percent) {
return true;
}
return false;
}
/*
construct a log file name given a log number.
The number in the log filename will *not* be zero-padded.
Note: Caller must free.
*/
char *DataFlash_File::_log_file_name_short(const uint16_t log_num) const
{
char *buf = nullptr;
if (asprintf(&buf, "%s/%u.BIN", _log_directory, (unsigned)log_num) == -1) {
return nullptr;
}
return buf;
}
/*
construct a log file name given a log number.
The number in the log filename will be zero-padded.
Note: Caller must free.
*/
char *DataFlash_File::_log_file_name_long(const uint16_t log_num) const
{
char *buf = nullptr;
if (asprintf(&buf, "%s/%08u.BIN", _log_directory, (unsigned)log_num) == -1) {
return nullptr;
}
return buf;
}
/*
return a log filename appropriate for the supplied log_num if a
filename exists with the short (not-zero-padded name) then it is the
appropirate name, otherwise the long (zero-padded) version is.
Note: Caller must free.
*/
char *DataFlash_File::_log_file_name(const uint16_t log_num) const
{
char *filename = _log_file_name_short(log_num);
if (filename == nullptr) {
return nullptr;
}
if (file_exists(filename)) {
return filename;
}
free(filename);
return _log_file_name_long(log_num);
}
/*
return path name of the lastlog.txt marker file
Note: Caller must free.
*/
char *DataFlash_File::_lastlog_file_name(void) const
{
char *buf = nullptr;
if (asprintf(&buf, "%s/LASTLOG.TXT", _log_directory) == -1) {
return nullptr;
}
return buf;
}
// remove all log files
void DataFlash_File::EraseAll()
{
if (hal.util->get_soft_armed()) {
// do not want to do any filesystem operations while we are e.g. flying
return;
}
if (!_initialised) {
return;
}
const bool was_logging = (_write_fd != -1);
stop_logging();
for (uint16_t log_num=1; log_num<=MAX_LOG_FILES; log_num++) {
char *fname = _log_file_name(log_num);
if (fname == nullptr) {
break;
}
hal.scheduler->expect_delay_ms(3000);
unlink(fname);
hal.scheduler->expect_delay_ms(0);
free(fname);
}
char *fname = _lastlog_file_name();
if (fname != nullptr) {
unlink(fname);
free(fname);
}
_cached_oldest_log = 0;
if (was_logging) {
start_new_log();
}
}
bool DataFlash_File::WritesOK() const
{
if (_write_fd == -1) {
return false;
}
if (_open_error) {
return false;
}
return true;
}
bool DataFlash_File::StartNewLogOK() const
{
if (_open_error) {
return false;
}
return DataFlash_Backend::StartNewLogOK();
}
/* Write a block of data at current offset */
bool DataFlash_File::_WritePrioritisedBlock(const void *pBuffer, uint16_t size, bool is_critical)
{
if (! WriteBlockCheckStartupMessages()) {
_dropped++;
return false;
}
if (!semaphore->take(1)) {
return false;
}
uint32_t space = _writebuf.space();
if (_writing_startup_messages &&
_startup_messagewriter->fmt_done()) {
// the state machine has called us, and it has finished
// writing format messages out. It can always get back to us
// with more messages later, so let's leave room for other
// things:
const uint32_t now = AP_HAL::millis();
const bool must_dribble = (now - last_messagewrite_message_sent) > 100;
if (!must_dribble &&
space < non_messagewriter_message_reserved_space()) {
// this message isn't dropped, it will be sent again...
semaphore->give();
return false;
}
last_messagewrite_message_sent = now;
} else {
// we reserve some amount of space for critical messages:
if (!is_critical && space < critical_message_reserved_space()) {
_dropped++;
semaphore->give();
return false;
}
}
// if no room for entire message - drop it:
if (space < size) {
hal.util->perf_count(_perf_overruns);
_dropped++;
semaphore->give();
return false;
}
_writebuf.write((uint8_t*)pBuffer, size);
df_stats_gather(size);
semaphore->give();
return true;
}
/*
find the highest log number
*/
uint16_t DataFlash_File::find_last_log()
{
unsigned ret = 0;
char *fname = _lastlog_file_name();
if (fname == nullptr) {
return ret;
}
hal.scheduler->expect_delay_ms(3000);
int fd = open(fname, O_RDONLY|O_CLOEXEC);
hal.scheduler->expect_delay_ms(0);
free(fname);
if (fd != -1) {
char buf[10];
memset(buf, 0, sizeof(buf));
if (read(fd, buf, sizeof(buf)-1) > 0) {
#if HAL_OS_POSIX_IO
sscanf(buf, "%u", &ret);
#else
ret = strtol(buf, NULL, 10);
#endif
}
close(fd);
}
return ret;
}
uint32_t DataFlash_File::_get_log_size(const uint16_t log_num) const
{
char *fname = _log_file_name(log_num);
if (fname == nullptr) {
return 0;
}
if (_write_fd != -1 && write_fd_semaphore->take_nonblocking()) {
if (_write_filename != nullptr && strcmp(_write_filename, fname) == 0) {
// it is the file we are currently writing
free(fname);
write_fd_semaphore->give();
return _write_offset;
}
write_fd_semaphore->give();
}
struct stat st;
hal.scheduler->expect_delay_ms(3000);
if (::stat(fname, &st) != 0) {
printf("Unable to fetch Log File Size: %s\n", strerror(errno));
free(fname);
hal.scheduler->expect_delay_ms(0);
return 0;
}
hal.scheduler->expect_delay_ms(0);
free(fname);
return st.st_size;
}
uint32_t DataFlash_File::_get_log_time(const uint16_t log_num) const
{
char *fname = _log_file_name(log_num);
if (fname == nullptr) {
return 0;
}
if (_write_fd != -1 && write_fd_semaphore->take_nonblocking()) {
if (_write_filename != nullptr && strcmp(_write_filename, fname) == 0) {
// it is the file we are currently writing
free(fname);
write_fd_semaphore->give();
uint64_t utc_usec;
if (!AP::rtc().get_utc_usec(utc_usec)) {
return 0;
}
return utc_usec / 1000000U;
}
write_fd_semaphore->give();
}
struct stat st;
hal.scheduler->expect_delay_ms(3000);
if (::stat(fname, &st) != 0) {
free(fname);
hal.scheduler->expect_delay_ms(0);
return 0;
}
free(fname);
hal.scheduler->expect_delay_ms(0);
return st.st_mtime;
}
/*
convert a list entry number back into a log number (which can then
be converted into a filename). A "list entry number" is a sequence
where the oldest log has a number of 1, the second-from-oldest 2,
and so on. Thus the highest list entry number is equal to the
number of logs.
*/
uint16_t DataFlash_File::_log_num_from_list_entry(const uint16_t list_entry)
{
uint16_t oldest_log = find_oldest_log();
if (oldest_log == 0) {
// We don't have any logs...
return 0;
}
uint32_t log_num = oldest_log + list_entry - 1;
if (log_num > MAX_LOG_FILES) {
log_num -= MAX_LOG_FILES;
}
return (uint16_t)log_num;
}
/*
find the number of pages in a log
*/
void DataFlash_File::get_log_boundaries(const uint16_t list_entry, uint16_t & start_page, uint16_t & end_page)
{
const uint16_t log_num = _log_num_from_list_entry(list_entry);
if (log_num == 0) {
// that failed - probably no logs
start_page = 0;
end_page = 0;
return;
}
start_page = 0;
end_page = _get_log_size(log_num) / DATAFLASH_PAGE_SIZE;
}
/*
retrieve data from a log file
*/
int16_t DataFlash_File::get_log_data(const uint16_t list_entry, const uint16_t page, const uint32_t offset, const uint16_t len, uint8_t *data)
{
if (!_initialised || _open_error) {
return -1;
}
const uint16_t log_num = _log_num_from_list_entry(list_entry);
if (log_num == 0) {
// that failed - probably no logs
return -1;
}
if (_read_fd != -1 && log_num != _read_fd_log_num) {
::close(_read_fd);
_read_fd = -1;
}
if (_read_fd == -1) {
char *fname = _log_file_name(log_num);
if (fname == nullptr) {
return -1;
}
stop_logging();
hal.scheduler->expect_delay_ms(3000);
_read_fd = ::open(fname, O_RDONLY|O_CLOEXEC);
hal.scheduler->expect_delay_ms(0);
if (_read_fd == -1) {
_open_error = true;
int saved_errno = errno;
::printf("Log read open fail for %s - %s\n",
fname, strerror(saved_errno));
hal.console->printf("Log read open fail for %s - %s\n",
fname, strerror(saved_errno));
free(fname);
return -1;
}
free(fname);
_read_offset = 0;
_read_fd_log_num = log_num;
}
uint32_t ofs = page * (uint32_t)DATAFLASH_PAGE_SIZE + offset;
/*
this rather strange bit of code is here to work around a bug
in file offsets in NuttX. Every few hundred blocks of reads
(starting at around 350k into a file) NuttX will get the
wrong offset for sequential reads. The offset it gets is
typically 128k earlier than it should be. It turns out that
calling lseek() with 0 offset and SEEK_CUR works around the
bug. We can remove this once we find the real bug.
*/
if (ofs / 4096 != (ofs+len) / 4096) {
off_t seek_current = ::lseek(_read_fd, 0, SEEK_CUR);
if (seek_current == (off_t)-1) {
close(_read_fd);
_read_fd = -1;
return -1;
}
if (seek_current != (off_t)_read_offset) {
if (::lseek(_read_fd, _read_offset, SEEK_SET) == (off_t)-1) {
close(_read_fd);
_read_fd = -1;
return -1;
}
}
}
if (ofs != _read_offset) {
if (::lseek(_read_fd, ofs, SEEK_SET) == (off_t)-1) {
close(_read_fd);
_read_fd = -1;
return -1;
}
_read_offset = ofs;
}
int16_t ret = (int16_t)::read(_read_fd, data, len);
if (ret > 0) {
_read_offset += ret;
}
return ret;
}
/*
find size and date of a log
*/
void DataFlash_File::get_log_info(const uint16_t list_entry, uint32_t &size, uint32_t &time_utc)
{
uint16_t log_num = _log_num_from_list_entry(list_entry);
if (log_num == 0) {
// that failed - probably no logs
size = 0;
time_utc = 0;
return;
}
size = _get_log_size(log_num);
time_utc = _get_log_time(log_num);
}
/*
get the number of logs - note that the log numbers must be consecutive
*/
uint16_t DataFlash_File::get_num_logs()
{
uint16_t ret = 0;
uint16_t high = find_last_log();
uint16_t i;
for (i=high; i>0; i--) {
if (! log_exists(i)) {
break;
}
ret++;
}
if (i == 0) {
for (i=MAX_LOG_FILES; i>high; i--) {
if (! log_exists(i)) {
break;
}
ret++;
}
}
return ret;
}
/*
stop logging
*/
void DataFlash_File::stop_logging(void)
{
// best-case effort to avoid annoying the IO thread
const bool have_sem = write_fd_semaphore->take(1);
if (_write_fd != -1) {
int fd = _write_fd;
_write_fd = -1;
::close(fd);
}
if (have_sem) {
write_fd_semaphore->give();
} else {
_internal_errors++;
}
}
void DataFlash_File::PrepForArming()
{
if (logging_started()) {
return;
}
start_new_log();
}
/*
start writing to a new log file
*/
uint16_t DataFlash_File::start_new_log(void)
{
stop_logging();
start_new_log_reset_variables();
if (_open_error) {
// we have previously failed to open a file - don't try again
// to prevent us trying to open files while in flight
return 0xFFFF;
}
if (_read_fd != -1) {
::close(_read_fd);
_read_fd = -1;
}
if (disk_space_avail() < _free_space_min_avail) {
hal.console->printf("Out of space for logging\n");
_open_error = true;
return 0xffff;
}
uint16_t log_num = find_last_log();
// re-use empty logs if possible
if (_get_log_size(log_num) > 0 || log_num == 0) {
log_num++;
}
if (log_num > MAX_LOG_FILES) {
log_num = 1;
}
if (!write_fd_semaphore->take(1)) {
_open_error = true;
return 0xFFFF;
}
if (_write_filename) {
free(_write_filename);
_write_filename = nullptr;
}
_write_filename = _log_file_name(log_num);
if (_write_filename == nullptr) {
_open_error = true;
write_fd_semaphore->give();
return 0xFFFF;
}
hal.scheduler->expect_delay_ms(3000);
#if HAL_OS_POSIX_IO
_write_fd = ::open(_write_filename, O_WRONLY|O_CREAT|O_TRUNC|O_CLOEXEC, 0666);
#else
//TODO add support for mode flags
_write_fd = ::open(_write_filename, O_WRONLY|O_CREAT|O_TRUNC|O_CLOEXEC);
#endif
hal.scheduler->expect_delay_ms(0);
_cached_oldest_log = 0;
if (_write_fd == -1) {
_initialised = false;
_open_error = true;
write_fd_semaphore->give();
int saved_errno = errno;
::printf("Log open fail for %s - %s\n",
_write_filename, strerror(saved_errno));
hal.console->printf("Log open fail for %s - %s\n",
_write_filename, strerror(saved_errno));
return 0xFFFF;
}
_last_write_ms = AP_HAL::millis();
_write_offset = 0;
_writebuf.clear();
write_fd_semaphore->give();
// now update lastlog.txt with the new log number
char *fname = _lastlog_file_name();
// we avoid fopen()/fprintf() here as it is not available on as many
// systems as open/write
hal.scheduler->expect_delay_ms(3000);
#if HAL_OS_POSIX_IO
int fd = open(fname, O_WRONLY|O_CREAT|O_CLOEXEC, 0644);
#else
int fd = open(fname, O_WRONLY|O_CREAT|O_CLOEXEC);
#endif
hal.scheduler->expect_delay_ms(0);
free(fname);
if (fd == -1) {
_open_error = true;
return 0xFFFF;
}
char buf[30];
snprintf(buf, sizeof(buf), "%u\r\n", (unsigned)log_num);
const ssize_t to_write = strlen(buf);
const ssize_t written = write(fd, buf, to_write);
close(fd);
if (written < to_write) {
_open_error = true;
return 0xFFFF;
}
return log_num;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX
void DataFlash_File::flush(void)
#if APM_BUILD_TYPE(APM_BUILD_Replay) || APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
{
uint32_t tnow = AP_HAL::millis();
while (_write_fd != -1 && _initialised && !_open_error && _writebuf.available()) {
// convince the IO timer that it really is OK to write out
// less than _writebuf_chunk bytes:
if (tnow > 2001) { // avoid resetting _last_write_time to 0
_last_write_time = tnow - 2001;
}
_io_timer();
}
if (write_fd_semaphore->take(1)) {
if (_write_fd != -1) {
::fsync(_write_fd);
}
write_fd_semaphore->give();
} else {
_internal_errors++;
}
}
#else
{
// flush is for replay and examples only
}
#endif // APM_BUILD_TYPE(APM_BUILD_Replay) || APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
#endif
void DataFlash_File::_io_timer(void)
{
uint32_t tnow = AP_HAL::millis();
_io_timer_heartbeat = tnow;
if (_write_fd == -1 || !_initialised || _open_error) {
return;
}
uint32_t nbytes = _writebuf.available();
if (nbytes == 0) {
return;
}
if (nbytes < _writebuf_chunk &&
tnow - _last_write_time < 2000UL) {
// write in _writebuf_chunk-sized chunks, but always write at
// least once per 2 seconds if data is available
return;
}
if (tnow - _free_space_last_check_time > _free_space_check_interval) {
_free_space_last_check_time = tnow;
last_io_operation = "disk_space_avail";
if (disk_space_avail() < _free_space_min_avail) {
hal.console->printf("Out of space for logging\n");
stop_logging();
_open_error = true; // prevent logging starting again
last_io_operation = "";
return;
}
last_io_operation = "";
}
hal.util->perf_begin(_perf_write);
_last_write_time = tnow;
if (nbytes > _writebuf_chunk) {
// be kind to the FAT PX4 filesystem
nbytes = _writebuf_chunk;
}
uint32_t size;
const uint8_t *head = _writebuf.readptr(size);
nbytes = MIN(nbytes, size);
// try to align writes on a 512 byte boundary to avoid filesystem reads
if ((nbytes + _write_offset) % 512 != 0) {
uint32_t ofs = (nbytes + _write_offset) % 512;
if (ofs < nbytes) {
nbytes -= ofs;
}
}
last_io_operation = "write";
if (!write_fd_semaphore->take(1)) {
return;
}
if (_write_fd == -1) {
write_fd_semaphore->give();
return;
}
ssize_t nwritten = ::write(_write_fd, head, nbytes);
last_io_operation = "";
if (nwritten <= 0) {
if (tnow - _last_write_ms > 2000) {
// if we can't write for 2 seconds we give up and close
// the file. This allows us to cope with temporary write
// failures caused by directory listing
hal.util->perf_count(_perf_errors);
last_io_operation = "close";
close(_write_fd);
last_io_operation = "";
_write_fd = -1;
_initialised = false;
printf("Failed to write to File: %s\n", strerror(errno));
}
} else {
_last_write_ms = tnow;
_write_offset += nwritten;
_writebuf.advance(nwritten);
/*
the best strategy for minimizing corruption on microSD cards
seems to be to write in 4k chunks and fsync the file on each
chunk, ensuring the directory entry is updated after each
write.
*/
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL && CONFIG_HAL_BOARD_SUBTYPE != HAL_BOARD_SUBTYPE_LINUX_NONE
last_io_operation = "fsync";
::fsync(_write_fd);
last_io_operation = "";
#endif
}
write_fd_semaphore->give();
hal.util->perf_end(_perf_write);
}
// this sensor is enabled if we should be logging at the moment
bool DataFlash_File::logging_enabled() const
{
if (hal.util->get_soft_armed() ||
_front.log_while_disarmed()) {
return true;
}
return false;
}
bool DataFlash_File::io_thread_alive() const
{
// if the io thread hasn't had a heartbeat in a full second then it is dead
return (AP_HAL::millis() - _io_timer_heartbeat) < 1000;
}
bool DataFlash_File::logging_failed() const
{
if (!_initialised) {
return true;
}
if (_open_error) {
return true;
}
if (!io_thread_alive()) {
// No heartbeat in a second. IO thread is dead?! Very Not
// Good.
return true;
}
return false;
}
void DataFlash_File::vehicle_was_disarmed()
{
if (_front._params.file_disarm_rot) {
// rotate our log. Closing the current one and letting the
// logging restart naturally based on log_disarmed should do
// the trick:
stop_logging();
}
}
void DataFlash_File::Log_Write_DataFlash_Stats_File(const struct df_stats &_stats)
{
struct log_DSF pkt = {
LOG_PACKET_HEADER_INIT(LOG_DF_FILE_STATS),
time_us : AP_HAL::micros64(),
dropped : _dropped,
internal_errors : _internal_errors,
blocks : _stats.blocks,
bytes : _stats.bytes,
buf_space_min : _stats.buf_space_min,
buf_space_max : _stats.buf_space_max,
buf_space_avg : (_stats.blocks) ? (_stats.buf_space_sigma / _stats.blocks) : 0,
};
WriteBlock(&pkt, sizeof(pkt));
}
void DataFlash_File::df_stats_gather(const uint16_t bytes_written) {
const uint32_t space_remaining = _writebuf.space();
if (space_remaining < stats.buf_space_min) {
stats.buf_space_min = space_remaining;
}
if (space_remaining > stats.buf_space_max) {
stats.buf_space_max = space_remaining;
}
stats.buf_space_sigma += space_remaining;
stats.bytes += bytes_written;
stats.blocks++;
}
void DataFlash_File::df_stats_clear() {
memset(&stats, '\0', sizeof(stats));
stats.buf_space_min = -1;
}
void DataFlash_File::df_stats_log() {
Log_Write_DataFlash_Stats_File(stats);
df_stats_clear();
}
#endif // HAL_OS_POSIX_IO