ardupilot/libraries/AP_Mount/AP_Mount_Servo.cpp
2024-11-12 11:01:21 +11:00

225 lines
8.4 KiB
C++

#include "AP_Mount_Servo.h"
#if HAL_MOUNT_SERVO_ENABLED
#include <AP_AHRS/AP_AHRS.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
extern const AP_HAL::HAL& hal;
// init - performs any required initialisation for this instance
void AP_Mount_Servo::init()
{
if (_instance == 0) {
_roll_idx = SRV_Channel::k_mount_roll;
_tilt_idx = SRV_Channel::k_mount_tilt;
_pan_idx = SRV_Channel::k_mount_pan;
_open_idx = SRV_Channel::k_mount_open;
} else {
// this must be the 2nd mount
_roll_idx = SRV_Channel::k_mount2_roll;
_tilt_idx = SRV_Channel::k_mount2_tilt;
_pan_idx = SRV_Channel::k_mount2_pan;
_open_idx = SRV_Channel::k_mount2_open;
}
AP_Mount_Backend::init();
}
// update mount position - should be called periodically
void AP_Mount_Servo::update()
{
// change to RC_TARGETING mode if RC input has changed
set_rctargeting_on_rcinput_change();
auto mount_mode = get_mode();
switch (mount_mode) {
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage
case MAV_MOUNT_MODE_RETRACT: {
_angle_bf_output_rad = _params.retract_angles.get() * DEG_TO_RAD;
mnt_target.angle_rad.set(_angle_bf_output_rad, false);
mnt_target.target_type = MountTargetType::ANGLE;
break;
}
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL: {
_angle_bf_output_rad = _params.neutral_angles.get() * DEG_TO_RAD;
mnt_target.angle_rad.set(_angle_bf_output_rad, false);
mnt_target.target_type = MountTargetType::ANGLE;
break;
}
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING: {
// mavlink targets are stored while handling the incoming message and considered valid
break;
}
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING: {
// update targets using pilot's rc inputs or go to neutral or retracted targets if no rc
if (rc().in_rc_failsafe()) {
if (option_set(Options::NEUTRAL_ON_RC_FS)) {
mnt_target.angle_rad.set(_angle_bf_output_rad, false);
mnt_target.target_type = MountTargetType::ANGLE;
}
} else {
// update targets using pilot's RC inputs
MountTarget rc_target;
get_rc_target(mnt_target.target_type, rc_target);
switch (mnt_target.target_type) {
case MountTargetType::ANGLE:
mnt_target.angle_rad = rc_target;
break;
case MountTargetType::RATE:
mnt_target.rate_rads = rc_target;
break;
}
}
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
if (get_angle_target_to_roi(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to Home location
case MAV_MOUNT_MODE_HOME_LOCATION:
if (get_angle_target_to_home(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to another vehicle
case MAV_MOUNT_MODE_SYSID_TARGET:
if (get_angle_target_to_sysid(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
default:
//do nothing
break;
}
// send target angles or rates depending on the target type
switch (mnt_target.target_type) {
case MountTargetType::RATE:
update_angle_target_from_rate(mnt_target.rate_rads, mnt_target.angle_rad);
FALLTHROUGH;
case MountTargetType::ANGLE:
// update _angle_bf_output_rad based on angle target
if ((mount_mode != MAV_MOUNT_MODE_RETRACT) & (mount_mode != MAV_MOUNT_MODE_NEUTRAL)) {
update_angle_outputs(mnt_target.angle_rad);
}
break;
}
// move mount to a "retracted position" into the fuselage with a fourth servo
const bool mount_open = (mount_mode == MAV_MOUNT_MODE_RETRACT) ? 0 : 1;
move_servo(_open_idx, mount_open, 0, 1);
// write the results to the servos
move_servo(_roll_idx, degrees(_angle_bf_output_rad.x)*10, _params.roll_angle_min*10, _params.roll_angle_max*10);
move_servo(_tilt_idx, degrees(_angle_bf_output_rad.y)*10, _params.pitch_angle_min*10, _params.pitch_angle_max*10);
move_servo(_pan_idx, degrees(_angle_bf_output_rad.z)*10, _params.yaw_angle_min*10, _params.yaw_angle_max*10);
}
// returns true if this mount can control its roll
bool AP_Mount_Servo::has_roll_control() const
{
return SRV_Channels::function_assigned(_roll_idx) && roll_range_valid();
}
// returns true if this mount can control its tilt
bool AP_Mount_Servo::has_pitch_control() const
{
return SRV_Channels::function_assigned(_tilt_idx) && pitch_range_valid();
}
// returns true if this mount can control its pan (required for multicopters)
bool AP_Mount_Servo::has_pan_control() const
{
return SRV_Channels::function_assigned(_pan_idx) && yaw_range_valid();
}
// get attitude as a quaternion. returns true on success
bool AP_Mount_Servo::get_attitude_quaternion(Quaternion& att_quat)
{
// No feedback from gimbal so simply report demanded servo angles (which is
// not the same as target angles).
float roll_rad = 0.0f;
float pitch_rad = 0.0f;
float yaw_rad = 0.0f;
if (has_roll_control()) {
roll_rad = constrain_float(_angle_bf_output_rad.x, radians(_params.roll_angle_min), radians(_params.roll_angle_max));
}
if (has_pitch_control()) {
pitch_rad = constrain_float(_angle_bf_output_rad.y, radians(_params.pitch_angle_min), radians(_params.pitch_angle_max));
}
if (has_pan_control()) {
yaw_rad = constrain_float(_angle_bf_output_rad.z, radians(_params.yaw_angle_min), radians(_params.yaw_angle_max));
}
// convert to quaternion
att_quat.from_euler(roll_rad, pitch_rad, yaw_rad);
return true;
}
// private methods
// update body-frame angle outputs from earth-frame angle targets
void AP_Mount_Servo::update_angle_outputs(const MountTarget& angle_rad)
{
const AP_AHRS &ahrs = AP::ahrs();
// get target yaw in body-frame with limits applied
const float yaw_bf_rad = constrain_float(angle_rad.get_bf_yaw(), radians(_params.yaw_angle_min), radians(_params.yaw_angle_max));
// default output to target earth-frame roll and pitch angles, body-frame yaw
_angle_bf_output_rad.x = angle_rad.roll;
_angle_bf_output_rad.y = angle_rad.pitch;
_angle_bf_output_rad.z = yaw_bf_rad;
// this is sufficient for self-stabilising brushless gimbals
if (!requires_stabilization) {
return;
}
// retrieve lean angles from ahrs
Vector2f ahrs_angle_rad = {ahrs.get_roll(), ahrs.get_pitch()};
// rotate ahrs roll and pitch angles to gimbal yaw
if (has_pan_control()) {
ahrs_angle_rad.rotate(-yaw_bf_rad);
}
// add roll and pitch lean angle correction
_angle_bf_output_rad.x -= ahrs_angle_rad.x;
_angle_bf_output_rad.y -= ahrs_angle_rad.y;
// lead filter
const Vector3f &gyro = ahrs.get_gyro();
if (!is_zero(_params.roll_stb_lead) && fabsf(ahrs.get_pitch()) < M_PI/3.0f) {
// Compute rate of change of euler roll angle
float roll_rate = gyro.x + (ahrs.sin_pitch() / ahrs.cos_pitch()) * (gyro.y * ahrs.sin_roll() + gyro.z * ahrs.cos_roll());
_angle_bf_output_rad.x -= roll_rate * _params.roll_stb_lead;
}
if (!is_zero(_params.pitch_stb_lead)) {
// Compute rate of change of euler pitch angle
float pitch_rate = ahrs.cos_pitch() * gyro.y - ahrs.sin_roll() * gyro.z;
_angle_bf_output_rad.y -= pitch_rate * _params.pitch_stb_lead;
}
}
// move_servo - moves servo with the given id to the specified angle. all angles are in degrees * 10
void AP_Mount_Servo::move_servo(uint8_t function_idx, int16_t angle, int16_t angle_min, int16_t angle_max)
{
SRV_Channels::move_servo((SRV_Channel::Aux_servo_function_t)function_idx, angle, angle_min, angle_max);
}
#endif // HAL_MOUNT_SERVO_ENABLED