ardupilot/libraries/AC_Fence/AC_Fence.cpp

760 lines
22 KiB
C++

#include "AC_Fence.h"
#if AP_FENCE_ENABLED
#include <AP_Vehicle/AP_Vehicle_Type.h>
#ifndef AC_FENCE_DUMMY_METHODS_ENABLED
#define AC_FENCE_DUMMY_METHODS_ENABLED (!(APM_BUILD_TYPE(APM_BUILD_Rover) | APM_BUILD_COPTER_OR_HELI | APM_BUILD_TYPE(APM_BUILD_ArduPlane) | APM_BUILD_TYPE(APM_BUILD_ArduSub)))
#endif
#if !AC_FENCE_DUMMY_METHODS_ENABLED
#include <AP_AHRS/AP_AHRS.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Logger/AP_Logger.h>
extern const AP_HAL::HAL& hal;
#if APM_BUILD_TYPE(APM_BUILD_Rover)
#define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON
#elif APM_BUILD_TYPE(APM_BUILD_ArduPlane)
#define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_POLYGON
#else
#define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON
#endif
const AP_Param::GroupInfo AC_Fence::var_info[] = {
// @Param: ENABLE
// @DisplayName: Fence enable/disable
// @Description: Allows you to enable (1) or disable (0) the fence functionality
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("ENABLE", 0, AC_Fence, _enabled, 0),
// @Param: TYPE
// @DisplayName: Fence Type
// @Description: Enabled fence types held as bitmask
// @Bitmask{Rover}: 1:Circle,2:Polygon
// @Bitmask{Copter, Plane, Sub}: 0:Max altitude,1:Circle,2:Polygon,3:Min altitude
// @User: Standard
AP_GROUPINFO("TYPE", 1, AC_Fence, _enabled_fences, AC_FENCE_TYPE_DEFAULT),
// @Param: ACTION
// @DisplayName: Fence Action
// @Description: What action should be taken when fence is breached
// @Values{Copter}: 0:Report Only,1:RTL or Land,2:Always Land,3:SmartRTL or RTL or Land,4:Brake or Land,5:SmartRTL or Land
// @Values{Rover}: 0:Report Only,1:RTL or Hold,2:Hold,3:SmartRTL or RTL or Hold,4:SmartRTL or Hold
// @Values{Plane}: 0:Report Only,1:RTL,6:Guided,7:GuidedThrottlePass
// @Values: 0:Report Only,1:RTL or Land
// @User: Standard
AP_GROUPINFO("ACTION", 2, AC_Fence, _action, AC_FENCE_ACTION_RTL_AND_LAND),
// @Param{Copter, Plane, Sub}: ALT_MAX
// @DisplayName: Fence Maximum Altitude
// @Description: Maximum altitude allowed before geofence triggers
// @Units: m
// @Range: 10 1000
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("ALT_MAX", 3, AC_Fence, _alt_max, AC_FENCE_ALT_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_SUB | AP_PARAM_FRAME_TRICOPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_PLANE),
// @Param: RADIUS
// @DisplayName: Circular Fence Radius
// @Description: Circle fence radius which when breached will cause an RTL
// @Units: m
// @Range: 30 10000
// @User: Standard
AP_GROUPINFO("RADIUS", 4, AC_Fence, _circle_radius, AC_FENCE_CIRCLE_RADIUS_DEFAULT),
// @Param: MARGIN
// @DisplayName: Fence Margin
// @Description: Distance that autopilot's should maintain from the fence to avoid a breach
// @Units: m
// @Range: 1 10
// @User: Standard
AP_GROUPINFO("MARGIN", 5, AC_Fence, _margin, AC_FENCE_MARGIN_DEFAULT),
// @Param: TOTAL
// @DisplayName: Fence polygon point total
// @Description: Number of polygon points saved in eeprom (do not update manually)
// @Range: 1 20
// @User: Standard
AP_GROUPINFO("TOTAL", 6, AC_Fence, _total, 0),
// @Param{Copter, Plane, Sub}: ALT_MIN
// @DisplayName: Fence Minimum Altitude
// @Description: Minimum altitude allowed before geofence triggers
// @Units: m
// @Range: -100 100
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Fence, _alt_min, AC_FENCE_ALT_MIN_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_SUB | AP_PARAM_FRAME_TRICOPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_PLANE),
// @Param{Plane}: RET_RALLY
// @DisplayName: Fence Return to Rally
// @Description: Should the vehicle return to fence return point or rally point
// @Values: 0:Fence Return Point,1:Nearest Rally Point
// @Range: 0 1
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("RET_RALLY", 8, AC_Fence, _ret_rally, 0, AP_PARAM_FRAME_PLANE),
// @Param{Plane}: RET_ALT
// @DisplayName: Fence Return Altitude
// @Description: Altitude the vehicle will transit to when a fence breach occurs
// @Units: m
// @Range: 0 32767
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("RET_ALT", 9, AC_Fence, _ret_altitude, 0.0f, AP_PARAM_FRAME_PLANE),
// @Param{Plane}: AUTOENABLE
// @DisplayName: Fence Auto-Enable
// @Description: Auto-enable of fence
// @Values: 0:AutoEnableOff,1:AutoEnableOnTakeoff,2:AutoEnableDisableFloorOnLanding,3:AutoEnableOnlyWhenArmed
// @Range: 0 3
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("AUTOENABLE", 10, AC_Fence, _auto_enabled, static_cast<uint8_t>(AutoEnable::ALWAYS_DISABLED), AP_PARAM_FRAME_PLANE),
AP_GROUPEND
};
/// Default constructor.
AC_Fence::AC_Fence()
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_singleton != nullptr) {
AP_HAL::panic("Fence must be singleton");
}
#endif
_singleton = this;
AP_Param::setup_object_defaults(this, var_info);
}
/// enable the Fence code generally; a master switch for all fences
void AC_Fence::enable(bool value)
{
if (_enabled && !value) {
AP::logger().Write_Event(LogEvent::FENCE_DISABLE);
} else if (!_enabled && value) {
AP::logger().Write_Event(LogEvent::FENCE_ENABLE);
}
_enabled = value;
if (!value) {
clear_breach(AC_FENCE_TYPE_ALT_MIN | AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON);
disable_floor();
} else {
enable_floor();
}
}
/// enable/disable fence floor only
void AC_Fence::enable_floor()
{
if (!_floor_enabled) {
// Floor is currently disabled, enable it
AP::logger().Write_Event(LogEvent::FENCE_FLOOR_ENABLE);
}
_floor_enabled = true;
}
void AC_Fence::disable_floor()
{
if (_floor_enabled) {
// Floor is currently enabled, disable it
AP::logger().Write_Event(LogEvent::FENCE_FLOOR_DISABLE);
}
_floor_enabled = false;
clear_breach(AC_FENCE_TYPE_ALT_MIN);
}
/*
called when an auto-takeoff is complete
*/
void AC_Fence::auto_enable_fence_after_takeoff(void)
{
switch(auto_enabled()) {
case AC_Fence::AutoEnable::ALWAYS_ENABLED:
case AC_Fence::AutoEnable::ENABLE_DISABLE_FLOOR_ONLY:
enable(true);
gcs().send_text(MAV_SEVERITY_NOTICE, "Fence enabled (auto enabled)");
break;
default:
// fence does not auto-enable in other takeoff conditions
break;
}
}
/*
called when performing an auto landing
*/
void AC_Fence::auto_disable_fence_for_landing(void)
{
switch (auto_enabled()) {
case AC_Fence::AutoEnable::ALWAYS_ENABLED:
enable(false);
gcs().send_text(MAV_SEVERITY_NOTICE, "Fence disabled (auto disable)");
break;
case AC_Fence::AutoEnable::ENABLE_DISABLE_FLOOR_ONLY:
disable_floor();
gcs().send_text(MAV_SEVERITY_NOTICE, "Fence floor disabled (auto disable)");
break;
default:
// fence does not auto-disable in other landing conditions
break;
}
}
bool AC_Fence::present() const
{
const auto enabled_fences = _enabled_fences.get();
// A fence is present if any of the conditions are true.
// * tin can (circle) is enabled
// * min or max alt is enabled
// * polygon fences are enabled and any fence has been uploaded
if (enabled_fences & AC_FENCE_TYPE_CIRCLE ||
enabled_fences & AC_FENCE_TYPE_ALT_MIN ||
enabled_fences & AC_FENCE_TYPE_ALT_MAX ||
((enabled_fences & AC_FENCE_TYPE_POLYGON) && _poly_loader.total_fence_count() > 0)) {
return true;
}
return false;
}
/// get_enabled_fences - returns bitmask of enabled fences
uint8_t AC_Fence::get_enabled_fences() const
{
if (!_enabled && !_auto_enabled) {
return 0;
}
return _enabled_fences;
}
// additional checks for the polygon fence:
bool AC_Fence::pre_arm_check_polygon(const char* &fail_msg) const
{
if (!(_enabled_fences & AC_FENCE_TYPE_POLYGON)) {
// not enabled; all good
return true;
}
if (! _poly_loader.loaded()) {
fail_msg = "Fences invalid";
return false;
}
if (!_poly_loader.check_inclusion_circle_margin(_margin)) {
fail_msg = "Margin is less than inclusion circle radius";
return false;
}
return true;
}
// additional checks for the circle fence:
bool AC_Fence::pre_arm_check_circle(const char* &fail_msg) const
{
if (_circle_radius < 0) {
fail_msg = "Invalid FENCE_RADIUS value";
return false;
}
if (_circle_radius < _margin) {
fail_msg = "FENCE_MARGIN is less than FENCE_RADIUS";
return false;
}
return true;
}
// additional checks for the alt fence:
bool AC_Fence::pre_arm_check_alt(const char* &fail_msg) const
{
if (_alt_max < 0.0f) {
fail_msg = "Invalid FENCE_ALT_MAX value";
return false;
}
if (_alt_min < -100.0f) {
fail_msg = "Invalid FENCE_ALT_MIN value";
return false;
}
return true;
}
/// pre_arm_check - returns true if all pre-takeoff checks have completed successfully
bool AC_Fence::pre_arm_check(const char* &fail_msg) const
{
fail_msg = nullptr;
// if fences are enabled but none selected fail pre-arm check
if (enabled() && !present()) {
fail_msg = "Fences enabled, but none selected";
return false;
}
// if not enabled or not fence set-up always return true
if ((!_enabled && !_auto_enabled) || !_enabled_fences) {
return true;
}
// if we have horizontal limits enabled, check we can get a
// relative position from the AHRS
if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) ||
(_enabled_fences & AC_FENCE_TYPE_POLYGON)) {
Vector2f position;
if (!AP::ahrs().get_relative_position_NE_home(position)) {
fail_msg = "Fence requires position";
return false;
}
}
if (!pre_arm_check_polygon(fail_msg)) {
return false;
}
if (!pre_arm_check_circle(fail_msg)) {
return false;
}
if (!pre_arm_check_alt(fail_msg)) {
return false;
}
// check no limits are currently breached
if (_breached_fences) {
fail_msg = "vehicle outside fence";
return false;
}
// validate FENCE_MARGIN parameter range
if (_margin < 0.0f) {
fail_msg = "Invalid FENCE_MARGIN value";
return false;
}
if (_alt_max < _alt_min) {
fail_msg = "FENCE_ALT_MAX < FENCE_ALT_MIN";
return false;
}
if (_alt_max - _alt_min <= 2.0f * _margin) {
fail_msg = "FENCE_MARGIN too big";
return false;
}
// if we got this far everything must be ok
return true;
}
/// returns true if we have freshly breached the maximum altitude
/// fence; also may set up a fallback fence which, if breached, will
/// cause the altitude fence to be freshly breached
bool AC_Fence::check_fence_alt_max()
{
// altitude fence check
if (!(_enabled_fences & AC_FENCE_TYPE_ALT_MAX)) {
// not enabled; no breach
return false;
}
AP::ahrs().get_relative_position_D_home(_curr_alt);
_curr_alt = -_curr_alt; // translate Down to Up
// check if we are over the altitude fence
if (_curr_alt >= _alt_max) {
// record distance above breach
_alt_max_breach_distance = _curr_alt - _alt_max;
// check for a new breach or a breach of the backup fence
if (!(_breached_fences & AC_FENCE_TYPE_ALT_MAX) ||
(!is_zero(_alt_max_backup) && _curr_alt >= _alt_max_backup)) {
// new breach
record_breach(AC_FENCE_TYPE_ALT_MAX);
// create a backup fence 20m higher up
_alt_max_backup = _curr_alt + AC_FENCE_ALT_MAX_BACKUP_DISTANCE;
// new breach
return true;
}
// old breach
return false;
}
// not breached
// clear max alt breach if present
if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) != 0) {
clear_breach(AC_FENCE_TYPE_ALT_MAX);
_alt_max_backup = 0.0f;
_alt_max_breach_distance = 0.0f;
}
return false;
}
/// returns true if we have freshly breached the minimum altitude
/// fence; also may set up a fallback fence which, if breached, will
/// cause the altitude fence to be freshly breached
bool AC_Fence::check_fence_alt_min()
{
// altitude fence check
if (!(_enabled_fences & AC_FENCE_TYPE_ALT_MIN)) {
// not enabled; no breach
return false;
}
AP::ahrs().get_relative_position_D_home(_curr_alt);
_curr_alt = -_curr_alt; // translate Down to Up
// check if we are under the altitude fence
if (_curr_alt <= _alt_min) {
// record distance below breach
_alt_min_breach_distance = _alt_min - _curr_alt;
// check for a new breach or a breach of the backup fence
if (!(_breached_fences & AC_FENCE_TYPE_ALT_MIN) ||
(!is_zero(_alt_min_backup) && _curr_alt <= _alt_min_backup)) {
// new breach
record_breach(AC_FENCE_TYPE_ALT_MIN);
// create a backup fence 20m lower down
_alt_min_backup = _curr_alt - AC_FENCE_ALT_MIN_BACKUP_DISTANCE;
// new breach
return true;
}
// old breach
return false;
}
// not breached
// clear min alt breach if present
if ((_breached_fences & AC_FENCE_TYPE_ALT_MIN) != 0) {
clear_breach(AC_FENCE_TYPE_ALT_MIN);
_alt_min_backup = 0.0f;
_alt_min_breach_distance = 0.0f;
}
return false;
}
// check_fence_polygon - returns true if the poly fence is freshly
// breached. That includes being inside exclusion zones and outside
// inclusions zones
bool AC_Fence::check_fence_polygon()
{
const bool was_breached = _breached_fences & AC_FENCE_TYPE_POLYGON;
const bool breached = ((_enabled_fences & AC_FENCE_TYPE_POLYGON) &&
_poly_loader.breached());
if (breached) {
if (!was_breached) {
record_breach(AC_FENCE_TYPE_POLYGON);
return true;
}
return false;
}
if (was_breached) {
clear_breach(AC_FENCE_TYPE_POLYGON);
}
return false;
}
/// check_fence_circle - returns true if the circle fence (defined via
/// parameters) has been freshly breached. May also set up a backup
/// fence outside the fence and return a fresh breach if that backup
/// fence is breaced.
bool AC_Fence::check_fence_circle()
{
if (!(_enabled_fences & AC_FENCE_TYPE_CIRCLE)) {
// not enabled; no breach
return false;
}
Vector2f home;
if (AP::ahrs().get_relative_position_NE_home(home)) {
// we (may) remain breached if we can't update home
_home_distance = home.length();
}
// check if we are outside the fence
if (_home_distance >= _circle_radius) {
// record distance outside the fence
_circle_breach_distance = _home_distance - _circle_radius;
// check for a new breach or a breach of the backup fence
if (!(_breached_fences & AC_FENCE_TYPE_CIRCLE) ||
(!is_zero(_circle_radius_backup) && _home_distance >= _circle_radius_backup)) {
// new breach
// create a backup fence 20m further out
record_breach(AC_FENCE_TYPE_CIRCLE);
_circle_radius_backup = _home_distance + AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE;
return true;
}
return false;
}
// not currently breached
// clear circle breach if present
if (_breached_fences & AC_FENCE_TYPE_CIRCLE) {
clear_breach(AC_FENCE_TYPE_CIRCLE);
_circle_radius_backup = 0.0f;
_circle_breach_distance = 0.0f;
}
return false;
}
/// check - returns bitmask of fence types breached (if any)
uint8_t AC_Fence::check()
{
uint8_t ret = 0;
// return immediately if disabled
if ((!_enabled && !_auto_enabled) || !_enabled_fences) {
return 0;
}
// clear any breach from a non-enabled fence
clear_breach(~_enabled_fences);
// check if pilot is attempting to recover manually
if (_manual_recovery_start_ms != 0) {
// we ignore any fence breaches during the manual recovery period which is about 10 seconds
if ((AP_HAL::millis() - _manual_recovery_start_ms) < AC_FENCE_MANUAL_RECOVERY_TIME_MIN) {
return 0;
}
// recovery period has passed so reset manual recovery time
// and continue with fence breach checks
_manual_recovery_start_ms = 0;
}
// maximum altitude fence check
if (check_fence_alt_max()) {
ret |= AC_FENCE_TYPE_ALT_MAX;
}
// minimum altitude fence check
if (_floor_enabled && check_fence_alt_min()) {
ret |= AC_FENCE_TYPE_ALT_MIN;
}
// circle fence check
if (check_fence_circle()) {
ret |= AC_FENCE_TYPE_CIRCLE;
}
// polygon fence check
if (check_fence_polygon()) {
ret |= AC_FENCE_TYPE_POLYGON;
}
// return any new breaches that have occurred
return ret;
}
// returns true if the destination is within fence (used to reject waypoints outside the fence)
bool AC_Fence::check_destination_within_fence(const Location& loc)
{
// Altitude fence check - Fence Ceiling
if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX)) {
int32_t alt_above_home_cm;
if (loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, alt_above_home_cm)) {
if ((alt_above_home_cm * 0.01f) > _alt_max) {
return false;
}
}
}
// Altitude fence check - Fence Floor
if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MIN)) {
int32_t alt_above_home_cm;
if (loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, alt_above_home_cm)) {
if ((alt_above_home_cm * 0.01f) < _alt_min) {
return false;
}
}
}
// Circular fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_CIRCLE)) {
if (AP::ahrs().get_home().get_distance(loc) > _circle_radius) {
return false;
}
}
// polygon fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_POLYGON)) {
if (_poly_loader.breached(loc)) {
return false;
}
}
return true;
}
/// record_breach - update breach bitmask, time and count
void AC_Fence::record_breach(uint8_t fence_type)
{
// if we haven't already breached a limit, update the breach time
if (!_breached_fences) {
const uint32_t now = AP_HAL::millis();
_breach_time = now;
// emit a message indicated we're newly-breached, but not too often
if (now - _last_breach_notify_sent_ms > 1000) {
_last_breach_notify_sent_ms = now;
gcs().send_message(MSG_FENCE_STATUS);
}
}
// update breach count
if (_breach_count < 65500) {
_breach_count++;
}
// update bitmask
_breached_fences |= fence_type;
}
/// clear_breach - update breach bitmask, time and count
void AC_Fence::clear_breach(uint8_t fence_type)
{
_breached_fences &= ~fence_type;
}
/// get_breach_distance - returns maximum distance in meters outside
/// of the given fences. fence_type is a bitmask here.
float AC_Fence::get_breach_distance(uint8_t fence_type) const
{
float max = 0.0f;
if (fence_type & AC_FENCE_TYPE_ALT_MAX) {
max = MAX(_alt_max_breach_distance, max);
}
if (fence_type & AC_FENCE_TYPE_ALT_MIN) {
max = MAX(_alt_min_breach_distance, max);
}
if (fence_type & AC_FENCE_TYPE_CIRCLE) {
max = MAX(_circle_breach_distance, max);
}
return max;
}
/// manual_recovery_start - caller indicates that pilot is re-taking manual control so fence should be disabled for 10 seconds
/// has no effect if no breaches have occurred
void AC_Fence::manual_recovery_start()
{
// return immediate if we haven't breached a fence
if (!_breached_fences) {
return;
}
// record time pilot began manual recovery
_manual_recovery_start_ms = AP_HAL::millis();
}
// methods for mavlink SYS_STATUS message (send_sys_status)
bool AC_Fence::sys_status_present() const
{
return present();
}
bool AC_Fence::sys_status_enabled() const
{
if (!sys_status_present()) {
return false;
}
if (_action == AC_FENCE_ACTION_REPORT_ONLY) {
return false;
}
// Fence is only enabled when the flag is enabled
return _enabled;
}
bool AC_Fence::sys_status_failed() const
{
if (!sys_status_present()) {
// not failed if not present; can fail if present but not enabled
return false;
}
if (get_breaches() != 0) {
return true;
}
return false;
}
AC_PolyFence_loader &AC_Fence::polyfence()
{
return _poly_loader;
}
const AC_PolyFence_loader &AC_Fence::polyfence() const
{
return _poly_loader;
}
#else // build type is not appropriate; provide a dummy implementation:
const AP_Param::GroupInfo AC_Fence::var_info[] = { AP_GROUPEND };
AC_Fence::AC_Fence() {};
void AC_Fence::enable(bool value) {};
void AC_Fence::disable_floor() {};
void AC_Fence::auto_enable_fence_after_takeoff() {};
void AC_Fence::auto_disable_fence_for_landing() {};
bool AC_Fence::present() const { return false; }
uint8_t AC_Fence::get_enabled_fences() const { return 0; }
bool AC_Fence::pre_arm_check(const char* &fail_msg) const { return true; }
uint8_t AC_Fence::check() { return 0; }
bool AC_Fence::check_destination_within_fence(const Location& loc) { return true; }
float AC_Fence::get_breach_distance(uint8_t fence_type) const { return 0.0; }
void AC_Fence::manual_recovery_start() {}
bool AC_Fence::sys_status_present() const { return false; }
bool AC_Fence::sys_status_enabled() const { return false; }
bool AC_Fence::sys_status_failed() const { return false; }
AC_PolyFence_loader &AC_Fence::polyfence()
{
return _poly_loader;
}
const AC_PolyFence_loader &AC_Fence::polyfence() const
{
return _poly_loader;
}
#endif // #if AC_FENCE_DUMMY_METHODS_ENABLED
// singleton instance
AC_Fence *AC_Fence::_singleton;
namespace AP
{
AC_Fence *fence()
{
return AC_Fence::get_singleton();
}
}
#endif // AP_FENCE_ENABLED