ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_Backend.cpp

789 lines
26 KiB
C++

#define AP_INLINE_VECTOR_OPS
#include <AP_HAL/AP_HAL.h>
#include "AP_InertialSensor.h"
#include "AP_InertialSensor_Backend.h"
#include <AP_Logger/AP_Logger.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#if AP_MODULE_SUPPORTED
#include <AP_Module/AP_Module.h>
#endif
#include <stdio.h>
#define SENSOR_RATE_DEBUG 0
const extern AP_HAL::HAL& hal;
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) :
_imu(imu)
{
}
/*
notify of a FIFO reset so we don't use bad data to update observed sensor rate
*/
void AP_InertialSensor_Backend::notify_accel_fifo_reset(uint8_t instance)
{
_imu._sample_accel_count[instance] = 0;
_imu._sample_accel_start_us[instance] = 0;
}
/*
notify of a FIFO reset so we don't use bad data to update observed sensor rate
*/
void AP_InertialSensor_Backend::notify_gyro_fifo_reset(uint8_t instance)
{
_imu._sample_gyro_count[instance] = 0;
_imu._sample_gyro_start_us[instance] = 0;
}
// set the amount of oversamping a accel is doing
void AP_InertialSensor_Backend::_set_accel_oversampling(uint8_t instance, uint8_t n)
{
_imu._accel_over_sampling[instance] = n;
}
// set the amount of oversamping a gyro is doing
void AP_InertialSensor_Backend::_set_gyro_oversampling(uint8_t instance, uint8_t n)
{
_imu._gyro_over_sampling[instance] = n;
}
/*
update the sensor rate for FIFO sensors
FIFO sensors produce samples at a fixed rate, but the clock in the
sensor may vary slightly from the system clock. This slowly adjusts
the rate to the observed rate
*/
void AP_InertialSensor_Backend::_update_sensor_rate(uint16_t &count, uint32_t &start_us, float &rate_hz) const
{
uint32_t now = AP_HAL::micros();
if (start_us == 0) {
count = 0;
start_us = now;
} else {
count++;
if (now - start_us > 1000000UL) {
float observed_rate_hz = count * 1.0e6f / (now - start_us);
#if 0
printf("IMU RATE: %.1f should be %.1f\n", observed_rate_hz, rate_hz);
#endif
float filter_constant = 0.98f;
float upper_limit = 1.05f;
float lower_limit = 0.95f;
if (sensors_converging()) {
// converge quickly for first 30s, then more slowly
filter_constant = 0.8f;
upper_limit = 2.0f;
lower_limit = 0.5f;
}
observed_rate_hz = constrain_float(observed_rate_hz, rate_hz*lower_limit, rate_hz*upper_limit);
rate_hz = filter_constant * rate_hz + (1-filter_constant) * observed_rate_hz;
count = 0;
start_us = now;
}
}
}
void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel)
{
/*
accel calibration is always done in sensor frame with this
version of the code. That means we apply the rotation after the
offsets and scaling.
*/
// rotate for sensor orientation
accel.rotate(_imu._accel_orientation[instance]);
#if HAL_INS_TEMPERATURE_CAL_ENABLE
if (_imu.tcal_learning) {
_imu.tcal[instance].update_accel_learning(accel, _imu.get_temperature(instance));
}
#endif
if (!_imu._calibrating_accel && (_imu._acal == nullptr
#if HAL_INS_ACCELCAL_ENABLED
|| !_imu._acal->running()
#endif
)) {
#if HAL_INS_TEMPERATURE_CAL_ENABLE
// apply temperature corrections
_imu.tcal[instance].correct_accel(_imu.get_temperature(instance), _imu.caltemp_accel[instance], accel);
#endif
// apply offsets
accel -= _imu._accel_offset[instance];
// apply scaling
const Vector3f &accel_scale = _imu._accel_scale[instance].get();
accel.x *= accel_scale.x;
accel.y *= accel_scale.y;
accel.z *= accel_scale.z;
}
// rotate to body frame
if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) {
accel = *_imu._custom_rotation * accel;
} else {
accel.rotate(_imu._board_orientation);
}
}
void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro)
{
// rotate for sensor orientation
gyro.rotate(_imu._gyro_orientation[instance]);
#if HAL_INS_TEMPERATURE_CAL_ENABLE
if (_imu.tcal_learning) {
_imu.tcal[instance].update_gyro_learning(gyro, _imu.get_temperature(instance));
}
#endif
if (!_imu._calibrating_gyro) {
#if HAL_INS_TEMPERATURE_CAL_ENABLE
// apply temperature corrections
_imu.tcal[instance].correct_gyro(_imu.get_temperature(instance), _imu.caltemp_gyro[instance], gyro);
#endif
// gyro calibration is always assumed to have been done in sensor frame
gyro -= _imu._gyro_offset[instance];
}
if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) {
gyro = *_imu._custom_rotation * gyro;
} else {
gyro.rotate(_imu._board_orientation);
}
}
/*
rotate gyro vector and add the gyro offset
*/
void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro) /* front end */
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
_imu._gyro[instance] = gyro;
_imu._gyro_healthy[instance] = true;
// publish delta angle
_imu._delta_angle[instance] = _imu._delta_angle_acc[instance];
_imu._delta_angle_dt[instance] = _imu._delta_angle_acc_dt[instance];
_imu._delta_angle_valid[instance] = true;
_imu._delta_angle_acc[instance].zero();
_imu._delta_angle_acc_dt[instance] = 0;
}
void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance,
const Vector3f &gyro,
uint64_t sample_us)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
float dt;
_update_sensor_rate(_imu._sample_gyro_count[instance], _imu._sample_gyro_start_us[instance],
_imu._gyro_raw_sample_rates[instance]);
uint64_t last_sample_us = _imu._gyro_last_sample_us[instance];
/*
we have two classes of sensors. FIFO based sensors produce data
at a very predictable overall rate, but the data comes in
bunches, so we use the provided sample rate for deltaT. Non-FIFO
sensors don't bunch up samples, but also tend to vary in actual
rate, so we use the provided sample_us to get the deltaT. The
difference between the two is whether sample_us is provided.
*/
if (sample_us != 0 && _imu._gyro_last_sample_us[instance] != 0) {
dt = (sample_us - _imu._gyro_last_sample_us[instance]) * 1.0e-6f;
_imu._gyro_last_sample_us[instance] = sample_us;
} else {
// don't accept below 40Hz
if (_imu._gyro_raw_sample_rates[instance] < 40) {
return;
}
dt = 1.0f / _imu._gyro_raw_sample_rates[instance];
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64();
sample_us = _imu._gyro_last_sample_us[instance];
}
#if AP_MODULE_SUPPORTED
// call gyro_sample hook if any
AP_Module::call_hook_gyro_sample(instance, dt, gyro);
#endif
// push gyros if optical flow present
if (hal.opticalflow) {
hal.opticalflow->push_gyro(gyro.x, gyro.y, dt);
}
// compute delta angle
Vector3f delta_angle = (gyro + _imu._last_raw_gyro[instance]) * 0.5f * dt;
// compute coning correction
// see page 26 of:
// Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation
// Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf
// see also examples/coning.py
Vector3f delta_coning = (_imu._delta_angle_acc[instance] +
_imu._last_delta_angle[instance] * (1.0f / 6.0f));
delta_coning = delta_coning % delta_angle;
delta_coning *= 0.5f;
{
WITH_SEMAPHORE(_sem);
uint64_t now = AP_HAL::micros64();
if (now - last_sample_us > 100000U) {
// zero accumulator if sensor was unhealthy for 0.1s
_imu._delta_angle_acc[instance].zero();
_imu._delta_angle_acc_dt[instance] = 0;
dt = 0;
delta_angle.zero();
}
// integrate delta angle accumulator
// the angles and coning corrections are accumulated separately in the
// referenced paper, but in simulation little difference was found between
// integrating together and integrating separately (see examples/coning.py)
_imu._delta_angle_acc[instance] += delta_angle + delta_coning;
_imu._delta_angle_acc_dt[instance] += dt;
// save previous delta angle for coning correction
_imu._last_delta_angle[instance] = delta_angle;
_imu._last_raw_gyro[instance] = gyro;
#if HAL_WITH_DSP
// capture gyro window for FFT analysis
if (_imu._gyro_window_size > 0) {
const Vector3f& scaled_gyro = gyro * _imu._gyro_raw_sampling_multiplier[instance];
_imu._gyro_window[instance][0].push(scaled_gyro.x);
_imu._gyro_window[instance][1].push(scaled_gyro.y);
_imu._gyro_window[instance][2].push(scaled_gyro.z);
}
#endif
Vector3f gyro_filtered = gyro;
// apply the harmonic notch filter
for (auto &notch : _imu.harmonic_notches) {
if (notch.params.enabled()) {
gyro_filtered = notch.filter[instance].apply(gyro_filtered);
}
}
// apply the low pass filter last to attentuate any notch induced noise
gyro_filtered = _imu._gyro_filter[instance].apply(gyro_filtered);
// if the filtering failed in any way then reset the filters and keep the old value
if (gyro_filtered.is_nan() || gyro_filtered.is_inf()) {
_imu._gyro_filter[instance].reset();
for (auto &notch : _imu.harmonic_notches) {
notch.filter[instance].reset();
}
} else {
_imu._gyro_filtered[instance] = gyro_filtered;
}
_imu._new_gyro_data[instance] = true;
}
if (!_imu.batchsampler.doing_post_filter_logging()) {
log_gyro_raw(instance, sample_us, gyro);
}
else {
log_gyro_raw(instance, sample_us, _imu._gyro_filtered[instance]);
}
}
/*
handle a delta-angle sample from the backend. This assumes FIFO
style sampling and the sample should not be rotated or corrected for
offsets.
This function should be used when the sensor driver can directly
provide delta-angle values from the sensor.
*/
void AP_InertialSensor_Backend::_notify_new_delta_angle(uint8_t instance, const Vector3f &dangle)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
float dt;
_update_sensor_rate(_imu._sample_gyro_count[instance], _imu._sample_gyro_start_us[instance],
_imu._gyro_raw_sample_rates[instance]);
uint64_t last_sample_us = _imu._gyro_last_sample_us[instance];
// don't accept below 40Hz
if (_imu._gyro_raw_sample_rates[instance] < 40) {
return;
}
dt = 1.0f / _imu._gyro_raw_sample_rates[instance];
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64();
uint64_t sample_us = _imu._gyro_last_sample_us[instance];
Vector3f gyro = dangle / dt;
_rotate_and_correct_gyro(instance, gyro);
#if AP_MODULE_SUPPORTED
// call gyro_sample hook if any
AP_Module::call_hook_gyro_sample(instance, dt, gyro);
#endif
// push gyros if optical flow present
if (hal.opticalflow) {
hal.opticalflow->push_gyro(gyro.x, gyro.y, dt);
}
// compute delta angle, including corrections
Vector3f delta_angle = gyro * dt;
// compute coning correction
// see page 26 of:
// Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation
// Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf
// see also examples/coning.py
Vector3f delta_coning = (_imu._delta_angle_acc[instance] +
_imu._last_delta_angle[instance] * (1.0f / 6.0f));
delta_coning = delta_coning % delta_angle;
delta_coning *= 0.5f;
{
WITH_SEMAPHORE(_sem);
uint64_t now = AP_HAL::micros64();
if (now - last_sample_us > 100000U) {
// zero accumulator if sensor was unhealthy for 0.1s
_imu._delta_angle_acc[instance].zero();
_imu._delta_angle_acc_dt[instance] = 0;
dt = 0;
delta_angle.zero();
}
// integrate delta angle accumulator
// the angles and coning corrections are accumulated separately in the
// referenced paper, but in simulation little difference was found between
// integrating together and integrating separately (see examples/coning.py)
_imu._delta_angle_acc[instance] += delta_angle + delta_coning;
_imu._delta_angle_acc_dt[instance] += dt;
// save previous delta angle for coning correction
_imu._last_delta_angle[instance] = delta_angle;
_imu._last_raw_gyro[instance] = gyro;
#if HAL_WITH_DSP
// capture gyro window for FFT analysis
if (_imu._gyro_window_size > 0) {
const Vector3f& scaled_gyro = gyro * _imu._gyro_raw_sampling_multiplier[instance];
_imu._gyro_window[instance][0].push(scaled_gyro.x);
_imu._gyro_window[instance][1].push(scaled_gyro.y);
_imu._gyro_window[instance][2].push(scaled_gyro.z);
}
#endif
Vector3f gyro_filtered = gyro;
// apply the harmonic notch filters
for (auto &notch : _imu.harmonic_notches) {
if (notch.params.enabled()) {
gyro_filtered = notch.filter[instance].apply(gyro_filtered);
}
}
// apply the low pass filter last to attentuate any notch induced noise
gyro_filtered = _imu._gyro_filter[instance].apply(gyro_filtered);
// if the filtering failed in any way then reset the filters and keep the old value
if (gyro_filtered.is_nan() || gyro_filtered.is_inf()) {
_imu._gyro_filter[instance].reset();
for (auto &notch : _imu.harmonic_notches) {
notch.filter[instance].reset();
}
} else {
_imu._gyro_filtered[instance] = gyro_filtered;
}
_imu._new_gyro_data[instance] = true;
}
if (!_imu.batchsampler.doing_post_filter_logging()) {
log_gyro_raw(instance, sample_us, gyro);
}
else {
log_gyro_raw(instance, sample_us, _imu._gyro_filtered[instance]);
}
}
void AP_InertialSensor_Backend::log_gyro_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &gyro)
{
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
// should not have been called
return;
}
if (should_log_imu_raw()) {
Write_GYR(instance, sample_us, gyro);
} else {
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, sample_us, gyro);
}
}
}
/*
rotate accel vector, scale and add the accel offset
*/
void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel) /* front end */
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
_imu._accel[instance] = accel;
_imu._accel_healthy[instance] = true;
// publish delta velocity
_imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance];
_imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance];
_imu._delta_velocity_valid[instance] = true;
_imu._delta_velocity_acc[instance].zero();
_imu._delta_velocity_acc_dt[instance] = 0;
if (_imu._accel_calibrator != nullptr && _imu._accel_calibrator[instance].get_status() == ACCEL_CAL_COLLECTING_SAMPLE) {
Vector3f cal_sample = _imu._delta_velocity[instance];
// remove rotation. Note that we don't need to remove offsets or scale factor as those
// are not applied when calibrating
cal_sample.rotate_inverse(_imu._board_orientation);
_imu._accel_calibrator[instance].new_sample(cal_sample, _imu._delta_velocity_dt[instance]);
}
}
void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance,
const Vector3f &accel,
uint64_t sample_us,
bool fsync_set)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
float dt;
_update_sensor_rate(_imu._sample_accel_count[instance], _imu._sample_accel_start_us[instance],
_imu._accel_raw_sample_rates[instance]);
uint64_t last_sample_us = _imu._accel_last_sample_us[instance];
/*
we have two classes of sensors. FIFO based sensors produce data
at a very predictable overall rate, but the data comes in
bunches, so we use the provided sample rate for deltaT. Non-FIFO
sensors don't bunch up samples, but also tend to vary in actual
rate, so we use the provided sample_us to get the deltaT. The
difference between the two is whether sample_us is provided.
*/
if (sample_us != 0 && _imu._accel_last_sample_us[instance] != 0) {
dt = (sample_us - _imu._accel_last_sample_us[instance]) * 1.0e-6f;
_imu._accel_last_sample_us[instance] = sample_us;
} else {
// don't accept below 40Hz
if (_imu._accel_raw_sample_rates[instance] < 40) {
return;
}
dt = 1.0f / _imu._accel_raw_sample_rates[instance];
_imu._accel_last_sample_us[instance] = AP_HAL::micros64();
sample_us = _imu._accel_last_sample_us[instance];
}
#if AP_MODULE_SUPPORTED
// call accel_sample hook if any
AP_Module::call_hook_accel_sample(instance, dt, accel, fsync_set);
#endif
_imu.calc_vibration_and_clipping(instance, accel, dt);
{
WITH_SEMAPHORE(_sem);
uint64_t now = AP_HAL::micros64();
if (now - last_sample_us > 100000U) {
// zero accumulator if sensor was unhealthy for 0.1s
_imu._delta_velocity_acc[instance].zero();
_imu._delta_velocity_acc_dt[instance] = 0;
dt = 0;
}
// delta velocity
_imu._delta_velocity_acc[instance] += accel * dt;
_imu._delta_velocity_acc_dt[instance] += dt;
_imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel);
if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) {
_imu._accel_filter[instance].reset();
}
_imu.set_accel_peak_hold(instance, _imu._accel_filtered[instance]);
_imu._new_accel_data[instance] = true;
}
if (!_imu.batchsampler.doing_post_filter_logging()) {
log_accel_raw(instance, sample_us, accel);
} else {
log_accel_raw(instance, sample_us, _imu._accel_filtered[instance]);
}
}
/*
handle a delta-velocity sample from the backend. This assumes FIFO style sampling and
the sample should not be rotated or corrected for offsets
This function should be used when the sensor driver can directly
provide delta-velocity values from the sensor.
*/
void AP_InertialSensor_Backend::_notify_new_delta_velocity(uint8_t instance, const Vector3f &dvel)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
float dt;
_update_sensor_rate(_imu._sample_accel_count[instance], _imu._sample_accel_start_us[instance],
_imu._accel_raw_sample_rates[instance]);
uint64_t last_sample_us = _imu._accel_last_sample_us[instance];
// don't accept below 40Hz
if (_imu._accel_raw_sample_rates[instance] < 40) {
return;
}
dt = 1.0f / _imu._accel_raw_sample_rates[instance];
_imu._accel_last_sample_us[instance] = AP_HAL::micros64();
uint64_t sample_us = _imu._accel_last_sample_us[instance];
Vector3f accel = dvel / dt;
_rotate_and_correct_accel(instance, accel);
#if AP_MODULE_SUPPORTED
// call accel_sample hook if any
AP_Module::call_hook_accel_sample(instance, dt, accel, false);
#endif
_imu.calc_vibration_and_clipping(instance, accel, dt);
{
WITH_SEMAPHORE(_sem);
uint64_t now = AP_HAL::micros64();
if (now - last_sample_us > 100000U) {
// zero accumulator if sensor was unhealthy for 0.1s
_imu._delta_velocity_acc[instance].zero();
_imu._delta_velocity_acc_dt[instance] = 0;
dt = 0;
}
// delta velocity including corrections
_imu._delta_velocity_acc[instance] += accel * dt;
_imu._delta_velocity_acc_dt[instance] += dt;
_imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel);
if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) {
_imu._accel_filter[instance].reset();
}
_imu.set_accel_peak_hold(instance, _imu._accel_filtered[instance]);
_imu._new_accel_data[instance] = true;
}
if (!_imu.batchsampler.doing_post_filter_logging()) {
log_accel_raw(instance, sample_us, accel);
} else {
log_accel_raw(instance, sample_us, _imu._accel_filtered[instance]);
}
}
void AP_InertialSensor_Backend::_notify_new_accel_sensor_rate_sample(uint8_t instance, const Vector3f &accel)
{
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
return;
}
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, AP_HAL::micros64(), accel);
}
void AP_InertialSensor_Backend::_notify_new_gyro_sensor_rate_sample(uint8_t instance, const Vector3f &gyro)
{
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
return;
}
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, AP_HAL::micros64(), gyro);
}
void AP_InertialSensor_Backend::log_accel_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &accel)
{
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
// should not have been called
return;
}
if (should_log_imu_raw()) {
Write_ACC(instance, sample_us, accel);
} else {
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, sample_us, accel);
}
}
}
void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance,
float max_offset)
{
_imu._accel_max_abs_offsets[instance] = max_offset;
}
// set accelerometer error_count
void AP_InertialSensor_Backend::_set_accel_error_count(uint8_t instance, uint32_t error_count)
{
_imu._accel_error_count[instance] = error_count;
}
// set gyro error_count
void AP_InertialSensor_Backend::_set_gyro_error_count(uint8_t instance, uint32_t error_count)
{
_imu._gyro_error_count[instance] = error_count;
}
// increment accelerometer error_count
void AP_InertialSensor_Backend::_inc_accel_error_count(uint8_t instance)
{
_imu._accel_error_count[instance]++;
}
// increment gyro error_count
void AP_InertialSensor_Backend::_inc_gyro_error_count(uint8_t instance)
{
_imu._gyro_error_count[instance]++;
}
/*
publish a temperature value for an instance
*/
void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature) /* front end */
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
_imu._temperature[instance] = temperature;
#if HAL_HAVE_IMU_HEATER
/* give the temperature to the control loop in order to keep it constant*/
if (instance == 0) {
AP_BoardConfig *bc = AP::boardConfig();
if (bc) {
bc->set_imu_temp(temperature);
}
}
#endif
}
/*
common gyro update function for all backends
*/
void AP_InertialSensor_Backend::update_gyro(uint8_t instance) /* front end */
{
WITH_SEMAPHORE(_sem);
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
if (_imu._new_gyro_data[instance]) {
_publish_gyro(instance, _imu._gyro_filtered[instance]);
// copy the gyro samples from the backend to the frontend window
#if HAL_WITH_DSP
_imu._gyro_raw[instance] = _imu._last_raw_gyro[instance] * _imu._gyro_raw_sampling_multiplier[instance];
#endif
_imu._new_gyro_data[instance] = false;
}
// possibly update filter frequency
const float gyro_rate = _gyro_raw_sample_rate(instance);
if (_last_gyro_filter_hz != _gyro_filter_cutoff() || sensors_converging()) {
_imu._gyro_filter[instance].set_cutoff_frequency(gyro_rate, _gyro_filter_cutoff());
_last_gyro_filter_hz = _gyro_filter_cutoff();
}
for (auto &notch : _imu.harmonic_notches) {
if (notch.params.enabled()) {
notch.update_params(instance, sensors_converging(), gyro_rate);
}
}
}
/*
common accel update function for all backends
*/
void AP_InertialSensor_Backend::update_accel(uint8_t instance) /* front end */
{
WITH_SEMAPHORE(_sem);
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
if (_imu._new_accel_data[instance]) {
_publish_accel(instance, _imu._accel_filtered[instance]);
_imu._new_accel_data[instance] = false;
}
// possibly update filter frequency
if (_last_accel_filter_hz != _accel_filter_cutoff()) {
_imu._accel_filter[instance].set_cutoff_frequency(_accel_raw_sample_rate(instance), _accel_filter_cutoff());
_last_accel_filter_hz = _accel_filter_cutoff();
}
}
bool AP_InertialSensor_Backend::should_log_imu_raw() const
{
if (_imu._log_raw_bit == (uint32_t)-1) {
// tracker does not set a bit
return false;
}
const AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
return false;
}
if (!logger->should_log(_imu._log_raw_bit)) {
return false;
}
return true;
}
// log an unexpected change in a register for an IMU
void AP_InertialSensor_Backend::log_register_change(uint32_t bus_id, const AP_HAL::Device::checkreg &reg)
{
AP::logger().Write("IREG", "TimeUS,DevID,Bank,Reg,Val", "QIBBB",
AP_HAL::micros64(),
bus_id,
reg.bank,
reg.regnum,
reg.value);
}