mirror of https://github.com/ArduPilot/ardupilot
848 lines
43 KiB
C++
848 lines
43 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AP_MotorsMatrix.cpp - ArduCopter motors library
|
|
* Code by RandyMackay. DIYDrones.com
|
|
*
|
|
*/
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_MotorsMatrix.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// init
|
|
void AP_MotorsMatrix::init(motor_frame_class frame_class, motor_frame_type frame_type)
|
|
{
|
|
// record requested frame class and type
|
|
_last_frame_class = frame_class;
|
|
_last_frame_type = frame_type;
|
|
|
|
// setup the motors
|
|
setup_motors(frame_class, frame_type);
|
|
|
|
// enable fast channels or instant pwm
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsMatrix::set_update_rate(uint16_t speed_hz)
|
|
{
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
uint16_t mask = 0;
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
mask |= 1U << i;
|
|
}
|
|
}
|
|
rc_set_freq(mask, _speed_hz);
|
|
}
|
|
|
|
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
|
|
void AP_MotorsMatrix::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type)
|
|
{
|
|
// exit immediately if armed or no change
|
|
if (armed() || (frame_class == _last_frame_class && _last_frame_type == frame_type)) {
|
|
return;
|
|
}
|
|
_last_frame_class = frame_class;
|
|
_last_frame_type = frame_type;
|
|
|
|
// setup the motors
|
|
setup_motors(frame_class, frame_type);
|
|
|
|
// enable fast channels or instant pwm
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
void AP_MotorsMatrix::output_to_motors()
|
|
{
|
|
int8_t i;
|
|
|
|
switch (_spool_state) {
|
|
case SpoolState::SHUT_DOWN: {
|
|
// no output
|
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_actuator[i] = 0.0f;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SpoolState::GROUND_IDLE:
|
|
// sends output to motors when armed but not flying
|
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
set_actuator_with_slew(_actuator[i], actuator_spin_up_to_ground_idle());
|
|
}
|
|
}
|
|
break;
|
|
case SpoolState::SPOOLING_UP:
|
|
case SpoolState::THROTTLE_UNLIMITED:
|
|
case SpoolState::SPOOLING_DOWN:
|
|
// set motor output based on thrust requests
|
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
set_actuator_with_slew(_actuator[i], thrust_to_actuator(_thrust_rpyt_out[i]));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// convert output to PWM and send to each motor
|
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rc_write(i, output_to_pwm(_actuator[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
uint16_t AP_MotorsMatrix::get_motor_mask()
|
|
{
|
|
uint16_t motor_mask = 0;
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_mask |= 1U << i;
|
|
}
|
|
}
|
|
uint16_t mask = rc_map_mask(motor_mask);
|
|
|
|
// add parent's mask
|
|
mask |= AP_MotorsMulticopter::get_motor_mask();
|
|
|
|
return mask;
|
|
}
|
|
|
|
// output_armed - sends commands to the motors
|
|
// includes new scaling stability patch
|
|
void AP_MotorsMatrix::output_armed_stabilizing()
|
|
{
|
|
uint8_t i; // general purpose counter
|
|
float roll_thrust; // roll thrust input value, +/- 1.0
|
|
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
|
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
|
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
|
|
float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0
|
|
float throttle_thrust_max; // throttle thrust maximum value, 0.0 - 1.0
|
|
float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing
|
|
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
|
float yaw_allowed = 1.0f; // amount of yaw we can fit in
|
|
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
|
|
|
|
// apply voltage and air pressure compensation
|
|
const float compensation_gain = get_compensation_gain(); // compensation for battery voltage and altitude
|
|
roll_thrust = _roll_in * compensation_gain;
|
|
pitch_thrust = _pitch_in * compensation_gain;
|
|
yaw_thrust = _yaw_in * compensation_gain;
|
|
throttle_thrust = get_throttle() * compensation_gain;
|
|
throttle_avg_max = _throttle_avg_max * compensation_gain;
|
|
throttle_thrust_max = _thrust_boost_ratio + (1.0f - _thrust_boost_ratio) * _throttle_thrust_max;
|
|
|
|
// sanity check throttle is above zero and below current limited throttle
|
|
if (throttle_thrust <= 0.0f) {
|
|
throttle_thrust = 0.0f;
|
|
limit.throttle_lower = true;
|
|
}
|
|
if (throttle_thrust >= throttle_thrust_max) {
|
|
throttle_thrust = throttle_thrust_max;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
// ensure that throttle_avg_max is between the input throttle and the maximum throttle
|
|
throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, throttle_thrust_max);
|
|
|
|
// calculate throttle that gives most possible room for yaw which is the lower of:
|
|
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest
|
|
// 2. the higher of:
|
|
// a) the pilot's throttle input
|
|
// b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle
|
|
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
|
|
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
|
|
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control)
|
|
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it
|
|
|
|
// Under the motor lost condition we remove the highest motor output from our calculations and let that motor go greater than 1.0
|
|
// To ensure control and maximum righting performance Hex and Octo have some optimal settings that should be used
|
|
// Y6 : MOT_YAW_HEADROOM = 350, ATC_RAT_RLL_IMAX = 1.0, ATC_RAT_PIT_IMAX = 1.0, ATC_RAT_YAW_IMAX = 0.5
|
|
// Octo-Quad (x8) x : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.375, ATC_RAT_PIT_IMAX = 0.375, ATC_RAT_YAW_IMAX = 0.375
|
|
// Octo-Quad (x8) + : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.75, ATC_RAT_PIT_IMAX = 0.75, ATC_RAT_YAW_IMAX = 0.375
|
|
// Usable minimums below may result in attitude offsets when motors are lost. Hex aircraft are only marginal and must be handles with care
|
|
// Hex : MOT_YAW_HEADROOM = 0, ATC_RAT_RLL_IMAX = 1.0, ATC_RAT_PIT_IMAX = 1.0, ATC_RAT_YAW_IMAX = 0.5
|
|
// Octo-Quad (x8) x : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.25, ATC_RAT_PIT_IMAX = 0.25, ATC_RAT_YAW_IMAX = 0.25
|
|
// Octo-Quad (x8) + : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.5, ATC_RAT_PIT_IMAX = 0.5, ATC_RAT_YAW_IMAX = 0.25
|
|
// Quads cannot make use of motor loss handling because it doesn't have enough degrees of freedom.
|
|
|
|
// calculate amount of yaw we can fit into the throttle range
|
|
// this is always equal to or less than the requested yaw from the pilot or rate controller
|
|
float rp_low = 1.0f; // lowest thrust value
|
|
float rp_high = -1.0f; // highest thrust value
|
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
// calculate the thrust outputs for roll and pitch
|
|
_thrust_rpyt_out[i] = roll_thrust * _roll_factor[i] + pitch_thrust * _pitch_factor[i];
|
|
// record lowest roll + pitch command
|
|
if (_thrust_rpyt_out[i] < rp_low) {
|
|
rp_low = _thrust_rpyt_out[i];
|
|
}
|
|
// record highest roll + pitch command
|
|
if (_thrust_rpyt_out[i] > rp_high && (!_thrust_boost || i != _motor_lost_index)) {
|
|
rp_high = _thrust_rpyt_out[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// include the lost motor scaled by _thrust_boost_ratio
|
|
if (_thrust_boost && motor_enabled[_motor_lost_index]) {
|
|
// record highest roll + pitch command
|
|
if (_thrust_rpyt_out[_motor_lost_index] > rp_high) {
|
|
rp_high = _thrust_boost_ratio * rp_high + (1.0f - _thrust_boost_ratio) * _thrust_rpyt_out[_motor_lost_index];
|
|
}
|
|
}
|
|
|
|
// check for roll and pitch saturation
|
|
if (rp_high - rp_low > 1.0f || throttle_avg_max < -rp_low) {
|
|
// Full range is being used by roll and pitch.
|
|
limit.roll_pitch = true;
|
|
}
|
|
|
|
// calculate the highest allowed average thrust that will provide maximum control range
|
|
throttle_thrust_best_rpy = MIN(0.5f, throttle_avg_max);
|
|
|
|
// calculate the maximum yaw control that can be used
|
|
// todo: make _yaw_headroom 0 to 1
|
|
yaw_allowed = (float)_yaw_headroom / 1000.0f;
|
|
yaw_allowed = _thrust_boost_ratio * 0.5f + (1.0f - _thrust_boost_ratio) * yaw_allowed;
|
|
yaw_allowed = MAX(MIN(throttle_thrust_best_rpy + rp_low, 1.0f - (throttle_thrust_best_rpy + rp_high)), yaw_allowed);
|
|
if (fabsf(yaw_thrust) > yaw_allowed) {
|
|
// not all commanded yaw can be used
|
|
yaw_thrust = constrain_float(yaw_thrust, -yaw_allowed, yaw_allowed);
|
|
limit.yaw = true;
|
|
}
|
|
|
|
// add yaw control to thrust outputs
|
|
float rpy_low = 1.0f; // lowest thrust value
|
|
float rpy_high = -1.0f; // highest thrust value
|
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_thrust_rpyt_out[i] = _thrust_rpyt_out[i] + yaw_thrust * _yaw_factor[i];
|
|
|
|
// record lowest roll + pitch + yaw command
|
|
if (_thrust_rpyt_out[i] < rpy_low) {
|
|
rpy_low = _thrust_rpyt_out[i];
|
|
}
|
|
// record highest roll + pitch + yaw command
|
|
if (_thrust_rpyt_out[i] > rpy_high && (!_thrust_boost || i != _motor_lost_index)) {
|
|
rpy_high = _thrust_rpyt_out[i];
|
|
}
|
|
}
|
|
}
|
|
// include the lost motor scaled by _thrust_boost_ratio
|
|
if (_thrust_boost) {
|
|
// record highest roll + pitch + yaw command
|
|
if (_thrust_rpyt_out[_motor_lost_index] > rpy_high && motor_enabled[_motor_lost_index]) {
|
|
rpy_high = _thrust_boost_ratio * rpy_high + (1.0f - _thrust_boost_ratio) * _thrust_rpyt_out[_motor_lost_index];
|
|
}
|
|
}
|
|
|
|
// calculate any scaling needed to make the combined thrust outputs fit within the output range
|
|
if (rpy_high - rpy_low > 1.0f) {
|
|
rpy_scale = 1.0f / (rpy_high - rpy_low);
|
|
}
|
|
if (is_negative(rpy_low)) {
|
|
rpy_scale = MIN(rpy_scale, -throttle_avg_max / rpy_low);
|
|
}
|
|
|
|
// calculate how close the motors can come to the desired throttle
|
|
rpy_high *= rpy_scale;
|
|
rpy_low *= rpy_scale;
|
|
throttle_thrust_best_rpy = -rpy_low;
|
|
thr_adj = throttle_thrust - throttle_thrust_best_rpy;
|
|
if (rpy_scale < 1.0f) {
|
|
// Full range is being used by roll, pitch, and yaw.
|
|
limit.roll_pitch = true;
|
|
limit.yaw = true;
|
|
if (thr_adj > 0.0f) {
|
|
limit.throttle_upper = true;
|
|
}
|
|
thr_adj = 0.0f;
|
|
} else {
|
|
if (thr_adj < 0.0f) {
|
|
// Throttle can't be reduced to desired value
|
|
// todo: add lower limit flag and ensure it is handled correctly in altitude controller
|
|
thr_adj = 0.0f;
|
|
} else if (thr_adj > 1.0f - (throttle_thrust_best_rpy + rpy_high)) {
|
|
// Throttle can't be increased to desired value
|
|
thr_adj = 1.0f - (throttle_thrust_best_rpy + rpy_high);
|
|
limit.throttle_upper = true;
|
|
}
|
|
}
|
|
|
|
// add scaled roll, pitch, constrained yaw and throttle for each motor
|
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_thrust_rpyt_out[i] = throttle_thrust_best_rpy + thr_adj + (rpy_scale * _thrust_rpyt_out[i]);
|
|
}
|
|
}
|
|
|
|
// check for failed motor
|
|
check_for_failed_motor(throttle_thrust_best_rpy + thr_adj);
|
|
}
|
|
|
|
// check for failed motor
|
|
// should be run immediately after output_armed_stabilizing
|
|
// first argument is the sum of:
|
|
// a) throttle_thrust_best_rpy : throttle level (from 0 to 1) providing maximum roll, pitch and yaw range without climbing
|
|
// b) thr_adj: the difference between the pilot's desired throttle and throttle_thrust_best_rpy
|
|
// records filtered motor output values in _thrust_rpyt_out_filt array
|
|
// sets thrust_balanced to true if motors are balanced, false if a motor failure is detected
|
|
// sets _motor_lost_index to index of failed motor
|
|
void AP_MotorsMatrix::check_for_failed_motor(float throttle_thrust_best_plus_adj)
|
|
{
|
|
// record filtered and scaled thrust output for motor loss monitoring purposes
|
|
float alpha = 1.0f / (1.0f + _loop_rate * 0.5f);
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_thrust_rpyt_out_filt[i] += alpha * (_thrust_rpyt_out[i] - _thrust_rpyt_out_filt[i]);
|
|
}
|
|
}
|
|
|
|
float rpyt_high = 0.0f;
|
|
float rpyt_sum = 0.0f;
|
|
uint8_t number_motors = 0.0f;
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
number_motors += 1;
|
|
rpyt_sum += _thrust_rpyt_out_filt[i];
|
|
// record highest thrust command
|
|
if (_thrust_rpyt_out_filt[i] > rpyt_high) {
|
|
rpyt_high = _thrust_rpyt_out_filt[i];
|
|
// hold motor lost index constant while thrust balance is true
|
|
if (_thrust_balanced) {
|
|
_motor_lost_index = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float thrust_balance = 1.0f;
|
|
if (rpyt_sum > 0.1f) {
|
|
thrust_balance = rpyt_high * number_motors / rpyt_sum;
|
|
}
|
|
// ensure thrust balance does not activate for multirotors with less than 6 motors
|
|
if (number_motors >= 6 && thrust_balance >= 1.5f && _thrust_balanced) {
|
|
_thrust_balanced = false;
|
|
}
|
|
if (thrust_balance <= 1.25f && !_thrust_balanced) {
|
|
_thrust_balanced = true;
|
|
}
|
|
|
|
// check to see if thrust boost is using more throttle than _throttle_thrust_max
|
|
if (_throttle_thrust_max > throttle_thrust_best_plus_adj && rpyt_high < 0.9f && _thrust_balanced) {
|
|
_thrust_boost = false;
|
|
}
|
|
}
|
|
|
|
// output_test_seq - spin a motor at the pwm value specified
|
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
|
void AP_MotorsMatrix::output_test_seq(uint8_t motor_seq, int16_t pwm)
|
|
{
|
|
// exit immediately if not armed
|
|
if (!armed()) {
|
|
return;
|
|
}
|
|
|
|
// loop through all the possible orders spinning any motors that match that description
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i] && _test_order[i] == motor_seq) {
|
|
// turn on this motor
|
|
rc_write(i, pwm);
|
|
}
|
|
}
|
|
}
|
|
|
|
// output_test_num - spin a motor connected to the specified output channel
|
|
// (should only be performed during testing)
|
|
// If a motor output channel is remapped, the mapped channel is used.
|
|
// Returns true if motor output is set, false otherwise
|
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
|
bool AP_MotorsMatrix::output_test_num(uint8_t output_channel, int16_t pwm)
|
|
{
|
|
if (!armed()) {
|
|
return false;
|
|
}
|
|
|
|
// Is channel in supported range?
|
|
if (output_channel > AP_MOTORS_MAX_NUM_MOTORS - 1) {
|
|
return false;
|
|
}
|
|
|
|
// Is motor enabled?
|
|
if (!motor_enabled[output_channel]) {
|
|
return false;
|
|
}
|
|
|
|
rc_write(output_channel, pwm); // output
|
|
return true;
|
|
}
|
|
|
|
// add_motor
|
|
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order)
|
|
{
|
|
// ensure valid motor number is provided
|
|
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) {
|
|
|
|
// increment number of motors if this motor is being newly motor_enabled
|
|
if (!motor_enabled[motor_num]) {
|
|
motor_enabled[motor_num] = true;
|
|
}
|
|
|
|
// set roll, pitch, thottle factors and opposite motor (for stability patch)
|
|
_roll_factor[motor_num] = roll_fac;
|
|
_pitch_factor[motor_num] = pitch_fac;
|
|
_yaw_factor[motor_num] = yaw_fac;
|
|
|
|
// set order that motor appears in test
|
|
_test_order[motor_num] = testing_order;
|
|
|
|
// call parent class method
|
|
add_motor_num(motor_num);
|
|
}
|
|
}
|
|
|
|
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal
|
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order)
|
|
{
|
|
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order);
|
|
}
|
|
|
|
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames)
|
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order)
|
|
{
|
|
add_motor_raw(
|
|
motor_num,
|
|
cosf(radians(roll_factor_in_degrees + 90)),
|
|
cosf(radians(pitch_factor_in_degrees)),
|
|
yaw_factor,
|
|
testing_order);
|
|
}
|
|
|
|
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
|
|
void AP_MotorsMatrix::remove_motor(int8_t motor_num)
|
|
{
|
|
// ensure valid motor number is provided
|
|
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) {
|
|
// disable the motor, set all factors to zero
|
|
motor_enabled[motor_num] = false;
|
|
_roll_factor[motor_num] = 0;
|
|
_pitch_factor[motor_num] = 0;
|
|
_yaw_factor[motor_num] = 0;
|
|
}
|
|
}
|
|
|
|
void AP_MotorsMatrix::setup_motors(motor_frame_class frame_class, motor_frame_type frame_type)
|
|
{
|
|
// remove existing motors
|
|
for (int8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
remove_motor(i);
|
|
}
|
|
|
|
bool success = true;
|
|
|
|
switch (frame_class) {
|
|
|
|
case MOTOR_FRAME_QUAD:
|
|
switch (frame_type) {
|
|
case MOTOR_FRAME_TYPE_PLUS:
|
|
add_motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor(AP_MOTORS_MOT_3, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_X:
|
|
add_motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
add_motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_BF_X:
|
|
// betaflight quad X order
|
|
// see: https://fpvfrenzy.com/betaflight-motor-order/
|
|
add_motor(AP_MOTORS_MOT_1, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,1);
|
|
add_motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,3);
|
|
add_motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_DJI_X:
|
|
// DJI quad X order
|
|
// see https://forum44.djicdn.com/data/attachment/forum/201711/26/172348bppvtt1ot1nrtp5j.jpg
|
|
add_motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
add_motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_CW_X:
|
|
// "clockwise X" motor order. Motors are ordered clockwise from front right
|
|
// matching test order
|
|
add_motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_V:
|
|
add_motor(AP_MOTORS_MOT_1, 45, 0.7981f, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -135, 1.0000f, 3);
|
|
add_motor(AP_MOTORS_MOT_3, -45, -0.7981f, 4);
|
|
add_motor(AP_MOTORS_MOT_4, 135, -1.0000f, 2);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_H:
|
|
// H frame set-up - same as X but motors spin in opposite directiSons
|
|
add_motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
add_motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_VTAIL:
|
|
/*
|
|
Tested with: Lynxmotion Hunter Vtail 400
|
|
- inverted rear outward blowing motors (at a 40 degree angle)
|
|
- should also work with non-inverted rear outward blowing motors
|
|
- no roll in rear motors
|
|
- no yaw in front motors
|
|
- should fly like some mix between a tricopter and X Quadcopter
|
|
|
|
Roll control comes only from the front motors, Yaw control only from the rear motors.
|
|
Roll & Pitch factor is measured by the angle away from the top of the forward axis to each arm.
|
|
|
|
Note: if we want the front motors to help with yaw,
|
|
motors 1's yaw factor should be changed to sin(radians(40)). Where "40" is the vtail angle
|
|
motors 3's yaw factor should be changed to -sin(radians(40))
|
|
*/
|
|
add_motor(AP_MOTORS_MOT_1, 60, 60, 0, 1);
|
|
add_motor(AP_MOTORS_MOT_2, 0, -160, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
add_motor(AP_MOTORS_MOT_3, -60, -60, 0, 4);
|
|
add_motor(AP_MOTORS_MOT_4, 0, 160, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_ATAIL:
|
|
/*
|
|
The A-Shaped VTail is the exact same as a V-Shaped VTail, with one difference:
|
|
- The Yaw factors are reversed, because the rear motors are facing different directions
|
|
|
|
With V-Shaped VTails, the props make a V-Shape when spinning, but with
|
|
A-Shaped VTails, the props make an A-Shape when spinning.
|
|
- Rear thrust on a V-Shaped V-Tail Quad is outward
|
|
- Rear thrust on an A-Shaped V-Tail Quad is inward
|
|
|
|
Still functions the same as the V-Shaped VTail mixing below:
|
|
- Yaw control is entirely in the rear motors
|
|
- Roll is is entirely in the front motors
|
|
*/
|
|
add_motor(AP_MOTORS_MOT_1, 60, 60, 0, 1);
|
|
add_motor(AP_MOTORS_MOT_2, 0, -160, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor(AP_MOTORS_MOT_3, -60, -60, 0, 4);
|
|
add_motor(AP_MOTORS_MOT_4, 0, 160, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_PLUSREV:
|
|
// plus with reversed motor directions
|
|
add_motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
add_motor(AP_MOTORS_MOT_3, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
break;
|
|
default:
|
|
// quad frame class does not support this frame type
|
|
success = false;
|
|
break;
|
|
}
|
|
break; // quad
|
|
|
|
case MOTOR_FRAME_HEXA:
|
|
switch (frame_type) {
|
|
case MOTOR_FRAME_TYPE_PLUS:
|
|
add_motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor(AP_MOTORS_MOT_3,-120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor(AP_MOTORS_MOT_4, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor(AP_MOTORS_MOT_5, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
add_motor(AP_MOTORS_MOT_6, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_X:
|
|
add_motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5);
|
|
add_motor(AP_MOTORS_MOT_3, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6);
|
|
add_motor(AP_MOTORS_MOT_4, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor(AP_MOTORS_MOT_5, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor(AP_MOTORS_MOT_6,-150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_H:
|
|
// H is same as X except middle motors are closer to center
|
|
add_motor_raw(AP_MOTORS_MOT_1, -1.0f, 0.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor_raw(AP_MOTORS_MOT_2, 1.0f, 0.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5);
|
|
add_motor_raw(AP_MOTORS_MOT_3, 1.0f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6);
|
|
add_motor_raw(AP_MOTORS_MOT_4, -1.0f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor_raw(AP_MOTORS_MOT_5, -1.0f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor_raw(AP_MOTORS_MOT_6, 1.0f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
break;
|
|
default:
|
|
// hexa frame class does not support this frame type
|
|
success = false;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case MOTOR_FRAME_OCTA:
|
|
switch (frame_type) {
|
|
case MOTOR_FRAME_TYPE_PLUS:
|
|
add_motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor(AP_MOTORS_MOT_3, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8);
|
|
add_motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
add_motor(AP_MOTORS_MOT_7, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7);
|
|
add_motor(AP_MOTORS_MOT_8, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_X:
|
|
add_motor(AP_MOTORS_MOT_1, 22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor(AP_MOTORS_MOT_3, 67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor(AP_MOTORS_MOT_4, 157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor(AP_MOTORS_MOT_5, -22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8);
|
|
add_motor(AP_MOTORS_MOT_6, -112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
add_motor(AP_MOTORS_MOT_7, -67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7);
|
|
add_motor(AP_MOTORS_MOT_8, 112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_V:
|
|
add_motor_raw(AP_MOTORS_MOT_1, 0.83f, 0.34f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7);
|
|
add_motor_raw(AP_MOTORS_MOT_2, -0.67f, -0.32f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
add_motor_raw(AP_MOTORS_MOT_3, 0.67f, -0.32f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
add_motor_raw(AP_MOTORS_MOT_4, -0.50f, -1.00f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor_raw(AP_MOTORS_MOT_5, 1.00f, 1.00f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8);
|
|
add_motor_raw(AP_MOTORS_MOT_6, -0.83f, 0.34f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor_raw(AP_MOTORS_MOT_7, -1.00f, 1.00f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor_raw(AP_MOTORS_MOT_8, 0.50f, -1.00f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_H:
|
|
add_motor_raw(AP_MOTORS_MOT_1, -1.0f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor_raw(AP_MOTORS_MOT_2, 1.0f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor_raw(AP_MOTORS_MOT_3, -1.0f, 0.333f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor_raw(AP_MOTORS_MOT_4, -1.0f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor_raw(AP_MOTORS_MOT_5, 1.0f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8);
|
|
add_motor_raw(AP_MOTORS_MOT_6, 1.0f, -0.333f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
add_motor_raw(AP_MOTORS_MOT_7, 1.0f, 0.333f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7);
|
|
add_motor_raw(AP_MOTORS_MOT_8, -1.0f, -0.333f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_I:
|
|
add_motor_raw(AP_MOTORS_MOT_1, 0.333f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor_raw(AP_MOTORS_MOT_2, -0.333f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor_raw(AP_MOTORS_MOT_3, 1.0f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor_raw(AP_MOTORS_MOT_4, 0.333f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor_raw(AP_MOTORS_MOT_5, -0.333f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8);
|
|
add_motor_raw(AP_MOTORS_MOT_6, -1.0f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
add_motor_raw(AP_MOTORS_MOT_7, -1.0f, -1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7);
|
|
add_motor_raw(AP_MOTORS_MOT_8, 1.0f, 1.0f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
break;
|
|
default:
|
|
// octa frame class does not support this frame type
|
|
success = false;
|
|
break;
|
|
} // octa frame type
|
|
break;
|
|
|
|
case MOTOR_FRAME_OCTAQUAD:
|
|
switch (frame_type) {
|
|
case MOTOR_FRAME_TYPE_PLUS:
|
|
add_motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7);
|
|
add_motor(AP_MOTORS_MOT_3, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5);
|
|
add_motor(AP_MOTORS_MOT_4, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
add_motor(AP_MOTORS_MOT_5, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8);
|
|
add_motor(AP_MOTORS_MOT_6, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor(AP_MOTORS_MOT_7, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor(AP_MOTORS_MOT_8, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_X:
|
|
add_motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7);
|
|
add_motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5);
|
|
add_motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
add_motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8);
|
|
add_motor(AP_MOTORS_MOT_6, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor(AP_MOTORS_MOT_7, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor(AP_MOTORS_MOT_8, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_V:
|
|
add_motor(AP_MOTORS_MOT_1, 45, 0.7981f, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -45, -0.7981f, 7);
|
|
add_motor(AP_MOTORS_MOT_3, -135, 1.0000f, 5);
|
|
add_motor(AP_MOTORS_MOT_4, 135, -1.0000f, 3);
|
|
add_motor(AP_MOTORS_MOT_5, -45, 0.7981f, 8);
|
|
add_motor(AP_MOTORS_MOT_6, 45, -0.7981f, 2);
|
|
add_motor(AP_MOTORS_MOT_7, 135, 1.0000f, 4);
|
|
add_motor(AP_MOTORS_MOT_8, -135, -1.0000f, 6);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_H:
|
|
// H frame set-up - same as X but motors spin in opposite directions
|
|
add_motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7);
|
|
add_motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8);
|
|
add_motor(AP_MOTORS_MOT_6, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor(AP_MOTORS_MOT_7, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
add_motor(AP_MOTORS_MOT_8, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
break;
|
|
default:
|
|
// octaquad frame class does not support this frame type
|
|
success = false;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case MOTOR_FRAME_DODECAHEXA: {
|
|
switch (frame_type) {
|
|
case MOTOR_FRAME_TYPE_PLUS:
|
|
add_motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1); // forward-top
|
|
add_motor(AP_MOTORS_MOT_2, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2); // forward-bottom
|
|
add_motor(AP_MOTORS_MOT_3, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3); // forward-right-top
|
|
add_motor(AP_MOTORS_MOT_4, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4); // forward-right-bottom
|
|
add_motor(AP_MOTORS_MOT_5, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5); // back-right-top
|
|
add_motor(AP_MOTORS_MOT_6, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6); // back-right-bottom
|
|
add_motor(AP_MOTORS_MOT_7, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7); // back-top
|
|
add_motor(AP_MOTORS_MOT_8, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8); // back-bottom
|
|
add_motor(AP_MOTORS_MOT_9, -120, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9); // back-left-top
|
|
add_motor(AP_MOTORS_MOT_10, -120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10); // back-left-bottom
|
|
add_motor(AP_MOTORS_MOT_11, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 11); // forward-left-top
|
|
add_motor(AP_MOTORS_MOT_12, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 12); // forward-left-bottom
|
|
break;
|
|
case MOTOR_FRAME_TYPE_X:
|
|
add_motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1); // forward-right-top
|
|
add_motor(AP_MOTORS_MOT_2, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2); // forward-right-bottom
|
|
add_motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3); // right-top
|
|
add_motor(AP_MOTORS_MOT_4, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4); // right-bottom
|
|
add_motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5); // back-right-top
|
|
add_motor(AP_MOTORS_MOT_6, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6); // back-right-bottom
|
|
add_motor(AP_MOTORS_MOT_7, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7); // back-left-top
|
|
add_motor(AP_MOTORS_MOT_8, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8); // back-left-bottom
|
|
add_motor(AP_MOTORS_MOT_9, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9); // left-top
|
|
add_motor(AP_MOTORS_MOT_10, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10); // left-bottom
|
|
add_motor(AP_MOTORS_MOT_11, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 11); // forward-left-top
|
|
add_motor(AP_MOTORS_MOT_12, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 12); // forward-left-bottom
|
|
break;
|
|
default:
|
|
// dodeca-hexa frame class does not support this frame type
|
|
success = false;
|
|
break;
|
|
}}
|
|
break;
|
|
|
|
case MOTOR_FRAME_Y6:
|
|
switch (frame_type) {
|
|
case MOTOR_FRAME_TYPE_Y6B:
|
|
// Y6 motor definition with all top motors spinning clockwise, all bottom motors counter clockwise
|
|
add_motor_raw(AP_MOTORS_MOT_1, -1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor_raw(AP_MOTORS_MOT_2, -1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor_raw(AP_MOTORS_MOT_3, 0.0f, -1.000f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3);
|
|
add_motor_raw(AP_MOTORS_MOT_4, 0.0f, -1.000f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4);
|
|
add_motor_raw(AP_MOTORS_MOT_5, 1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor_raw(AP_MOTORS_MOT_6, 1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
break;
|
|
case MOTOR_FRAME_TYPE_Y6F:
|
|
// Y6 motor layout for FireFlyY6
|
|
add_motor_raw(AP_MOTORS_MOT_1, 0.0f, -1.000f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
add_motor_raw(AP_MOTORS_MOT_2, -1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1);
|
|
add_motor_raw(AP_MOTORS_MOT_3, 1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5);
|
|
add_motor_raw(AP_MOTORS_MOT_4, 0.0f, -1.000f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
add_motor_raw(AP_MOTORS_MOT_5, -1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2);
|
|
add_motor_raw(AP_MOTORS_MOT_6, 1.0f, 0.500f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6);
|
|
break;
|
|
default:
|
|
add_motor_raw(AP_MOTORS_MOT_1, -1.0f, 0.666f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2);
|
|
add_motor_raw(AP_MOTORS_MOT_2, 1.0f, 0.666f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5);
|
|
add_motor_raw(AP_MOTORS_MOT_3, 1.0f, 0.666f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6);
|
|
add_motor_raw(AP_MOTORS_MOT_4, 0.0f, -1.333f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4);
|
|
add_motor_raw(AP_MOTORS_MOT_5, -1.0f, 0.666f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1);
|
|
add_motor_raw(AP_MOTORS_MOT_6, 0.0f, -1.333f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// matrix doesn't support the configured class
|
|
success = false;
|
|
break;
|
|
} // switch frame_class
|
|
|
|
// normalise factors to magnitude 0.5
|
|
normalise_rpy_factors();
|
|
|
|
_flags.initialised_ok = success;
|
|
}
|
|
|
|
// normalizes the roll, pitch and yaw factors so maximum magnitude is 0.5
|
|
void AP_MotorsMatrix::normalise_rpy_factors()
|
|
{
|
|
float roll_fac = 0.0f;
|
|
float pitch_fac = 0.0f;
|
|
float yaw_fac = 0.0f;
|
|
|
|
// find maximum roll, pitch and yaw factors
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
if (roll_fac < fabsf(_roll_factor[i])) {
|
|
roll_fac = fabsf(_roll_factor[i]);
|
|
}
|
|
if (pitch_fac < fabsf(_pitch_factor[i])) {
|
|
pitch_fac = fabsf(_pitch_factor[i]);
|
|
}
|
|
if (yaw_fac < fabsf(_yaw_factor[i])) {
|
|
yaw_fac = fabsf(_yaw_factor[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// scale factors back to -0.5 to +0.5 for each axis
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
if (!is_zero(roll_fac)) {
|
|
_roll_factor[i] = 0.5f * _roll_factor[i] / roll_fac;
|
|
}
|
|
if (!is_zero(pitch_fac)) {
|
|
_pitch_factor[i] = 0.5f * _pitch_factor[i] / pitch_fac;
|
|
}
|
|
if (!is_zero(yaw_fac)) {
|
|
_yaw_factor[i] = 0.5f * _yaw_factor[i] / yaw_fac;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
call vehicle supplied thrust compensation if set. This allows
|
|
vehicle code to compensate for vehicle specific motor arrangements
|
|
such as tiltrotors or tiltwings
|
|
*/
|
|
void AP_MotorsMatrix::thrust_compensation(void)
|
|
{
|
|
if (_thrust_compensation_callback) {
|
|
_thrust_compensation_callback(_thrust_rpyt_out, AP_MOTORS_MAX_NUM_MOTORS);
|
|
}
|
|
}
|