ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_BMI088.cpp

411 lines
11 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_InertialSensor_BMI088.h"
/*
device registers, names follow datasheet conventions, with REGA_
prefix for accel, and REGG_ prefix for gyro
*/
#define REGA_CHIPID 0x00
#define REGA_ERR_REG 0x02
#define REGA_STATUS 0x03
#define REGA_X_LSB 0x12
#define REGA_INT_STATUS_1 0x1D
#define REGA_TEMP_LSB 0x22
#define REGA_TEMP_MSB 0x23
#define REGA_CONF 0x40
#define REGA_RANGE 0x41
#define REGA_PWR_CONF 0x7C
#define REGA_PWR_CTRL 0x7D
#define REGA_SOFTRESET 0x7E
#define REGA_FIFO_CONFIG0 0x48
#define REGA_FIFO_CONFIG1 0x49
#define REGA_FIFO_DOWNS 0x45
#define REGA_FIFO_DATA 0x26
#define REGA_FIFO_LEN0 0x24
#define REGA_FIFO_LEN1 0x25
#define REGG_CHIPID 0x00
#define REGA_RATE_X_LSB 0x02
#define REGG_INT_STATUS_1 0x0A
#define REGG_INT_STATUS_2 0x0B
#define REGG_INT_STATUS_3 0x0C
#define REGG_FIFO_STATUS 0x0E
#define REGG_RANGE 0x0F
#define REGG_BW 0x10
#define REGG_LPM1 0x11
#define REGG_RATE_HBW 0x13
#define REGG_BGW_SOFTRESET 0x14
#define REGG_FIFO_CONFIG_1 0x3E
#define REGG_FIFO_DATA 0x3F
extern const AP_HAL::HAL& hal;
AP_InertialSensor_BMI088::AP_InertialSensor_BMI088(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> _dev_accel,
AP_HAL::OwnPtr<AP_HAL::Device> _dev_gyro,
enum Rotation _rotation)
: AP_InertialSensor_Backend(imu)
, dev_accel(std::move(_dev_accel))
, dev_gyro(std::move(_dev_gyro))
, rotation(_rotation)
{
}
AP_InertialSensor_Backend *
AP_InertialSensor_BMI088::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev_accel,
AP_HAL::OwnPtr<AP_HAL::Device> dev_gyro,
enum Rotation rotation)
{
if (!dev_accel || !dev_gyro) {
return nullptr;
}
auto sensor = new AP_InertialSensor_BMI088(imu, std::move(dev_accel), std::move(dev_gyro), rotation);
if (!sensor) {
return nullptr;
}
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
void AP_InertialSensor_BMI088::start()
{
accel_instance = _imu.register_accel(1600, dev_accel->get_bus_id_devtype(DEVTYPE_INS_BMI088));
gyro_instance = _imu.register_gyro(2000, dev_gyro->get_bus_id_devtype(DEVTYPE_INS_BMI088));
// setup sensor rotations from probe()
set_gyro_orientation(gyro_instance, rotation);
set_accel_orientation(accel_instance, rotation);
// setup callbacks
dev_accel->register_periodic_callback(1000000UL / 1600,
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI088::read_fifo_accel, void));
dev_gyro->register_periodic_callback(1000000UL / 2000,
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI088::read_fifo_gyro, void));
}
/*
read from accelerometer registers, special SPI handling needed
*/
bool AP_InertialSensor_BMI088::read_accel_registers(uint8_t reg, uint8_t *data, uint8_t len)
{
// when on I2C we just read normally
if (dev_accel->bus_type() != AP_HAL::Device::BUS_TYPE_SPI) {
return dev_accel->read_registers(reg, data, len);
}
// for SPI we need to discard the first returned byte. See
// datasheet for explanation
uint8_t b[len+2];
b[0] = reg | 0x80;
memset(&b[1], 0, len+1);
if (!dev_accel->transfer(b, len+2, b, len+2)) {
return false;
}
memcpy(data, &b[2], len);
return true;
}
/*
write to accel registers with retries. The SPI sensor may take
several tries to correctly write a register
*/
bool AP_InertialSensor_BMI088::write_accel_register(uint8_t reg, uint8_t v)
{
for (uint8_t i=0; i<8; i++) {
dev_accel->write_register(reg, v);
uint8_t v2 = 0;
if (read_accel_registers(reg, &v2, 1) && v2 == v) {
return true;
}
}
return false;
}
static const struct {
uint8_t reg;
uint8_t value;
} accel_config[] = {
{ REGA_CONF, 0xAC },
// setup 24g range
{ REGA_RANGE, 0x03 },
// disable low-power mode
{ REGA_PWR_CONF, 0 },
{ REGA_PWR_CTRL, 0x04 },
// setup FIFO for streaming X,Y,Z
{ REGA_FIFO_CONFIG0, 0x00 },
{ REGA_FIFO_CONFIG1, 0x50 },
};
bool AP_InertialSensor_BMI088::setup_accel_config(void)
{
if (done_accel_config) {
return true;
}
accel_config_count++;
for (uint8_t i=0; i<ARRAY_SIZE(accel_config); i++) {
uint8_t v;
if (!read_accel_registers(accel_config[i].reg, &v, 1)) {
return false;
}
if (v == accel_config[i].value) {
continue;
}
if (!write_accel_register(accel_config[i].reg, accel_config[i].value)) {
return false;
}
}
done_accel_config = true;
hal.console->printf("BMI088: accel config OK (%u tries)\n", (unsigned)accel_config_count);
return true;
}
/*
probe and initialise accelerometer
*/
bool AP_InertialSensor_BMI088::accel_init()
{
WITH_SEMAPHORE(dev_accel->get_semaphore());
uint8_t v;
// dummy ready on accel ChipID to init accel (see section 3 of datasheet)
read_accel_registers(REGA_CHIPID, &v, 1);
if (!read_accel_registers(REGA_CHIPID, &v, 1) || v != 0x1E) {
return false;
}
if (!setup_accel_config()) {
hal.console->printf("BMI088: delaying accel config\n");
}
hal.console->printf("BMI088: found accel\n");
return true;
}
/*
probe and initialise gyro
*/
bool AP_InertialSensor_BMI088::gyro_init()
{
WITH_SEMAPHORE(dev_gyro->get_semaphore());
uint8_t v;
if (!dev_gyro->read_registers(REGG_CHIPID, &v, 1) || v != 0x0F) {
return false;
}
if (!dev_gyro->write_register(REGG_BGW_SOFTRESET, 0xB6)) {
return false;
}
hal.scheduler->delay(10);
dev_gyro->setup_checked_registers(5, 20);
// setup 2000dps range
if (!dev_gyro->write_register(REGG_RANGE, 0x00, true)) {
return false;
}
// setup filter bandwidth 230Hz, no decimation
if (!dev_gyro->write_register(REGG_BW, 0x81, true)) {
return false;
}
// disable low-power mode
if (!dev_gyro->write_register(REGG_LPM1, 0, true)) {
return false;
}
// setup for filtered data
if (!dev_gyro->write_register(REGG_RATE_HBW, 0x00, true)) {
return false;
}
// setup FIFO for streaming X,Y,Z
if (!dev_gyro->write_register(REGG_FIFO_CONFIG_1, 0x80, true)) {
return false;
}
hal.console->printf("BMI088: found gyro\n");
return true;
}
bool AP_InertialSensor_BMI088::init()
{
dev_accel->set_read_flag(0x80);
dev_gyro->set_read_flag(0x80);
return accel_init() && gyro_init();
}
/*
read accel fifo
*/
void AP_InertialSensor_BMI088::read_fifo_accel(void)
{
if (!setup_accel_config()) {
return;
}
uint8_t len[2];
if (!read_accel_registers(REGA_FIFO_LEN0, len, 2)) {
_inc_accel_error_count(accel_instance);
return;
}
uint16_t fifo_length = len[0] + (len[1]<<8);
if (fifo_length & 0x8000) {
// empty
return;
}
// don't read more than 8 frames at a time
if (fifo_length > 8*7) {
fifo_length = 8*7;
}
if (fifo_length == 0) {
return;
}
uint8_t data[fifo_length];
if (!read_accel_registers(REGA_FIFO_DATA, data, fifo_length)) {
_inc_accel_error_count(accel_instance);
return;
}
// assume configured for 24g range
const float scale = (1.0/32768.0) * GRAVITY_MSS * 24.0;
const uint8_t *p = &data[0];
while (fifo_length >= 7) {
/*
the fifo frames are variable length, with the frame type in the first byte
*/
uint8_t frame_len = 2;
switch (p[0] & 0xFC) {
case 0x84: {
// accel frame
frame_len = 7;
const uint8_t *d = p+1;
int16_t xyz[3] {
int16_t(uint16_t(d[0] | (d[1]<<8))),
int16_t(uint16_t(d[2] | (d[3]<<8))),
int16_t(uint16_t(d[4] | (d[5]<<8)))};
Vector3f accel(xyz[0], xyz[1], xyz[2]);
accel *= scale;
_rotate_and_correct_accel(accel_instance, accel);
_notify_new_accel_raw_sample(accel_instance, accel);
break;
}
case 0x40:
// skip frame
frame_len = 2;
break;
case 0x44:
// sensortime frame
frame_len = 4;
break;
case 0x48:
// fifo config frame
frame_len = 2;
break;
case 0x50:
// sample drop frame
frame_len = 2;
break;
}
p += frame_len;
fifo_length -= frame_len;
}
if (temperature_counter++ == 100) {
temperature_counter = 0;
uint8_t tbuf[2];
if (!read_accel_registers(REGA_TEMP_LSB, tbuf, 2)) {
_inc_accel_error_count(accel_instance);
} else {
uint16_t temp_uint11 = (tbuf[0]<<3) | (tbuf[1]>>5);
int16_t temp_int11 = temp_uint11>1023?temp_uint11-2048:temp_uint11;
float temp_degc = temp_int11 * 0.125f + 23;
_publish_temperature(accel_instance, temp_degc);
}
}
}
/*
read gyro fifo
*/
void AP_InertialSensor_BMI088::read_fifo_gyro(void)
{
uint8_t num_frames;
if (!dev_gyro->read_registers(REGG_FIFO_STATUS, &num_frames, 1)) {
_inc_gyro_error_count(gyro_instance);
return;
}
num_frames &= 0x7F;
// don't read more than 8 frames at a time
if (num_frames > 8) {
num_frames = 8;
}
if (num_frames == 0) {
return;
}
uint8_t data[6*num_frames];
if (!dev_gyro->read_registers(REGG_FIFO_DATA, data, num_frames*6)) {
_inc_gyro_error_count(gyro_instance);
return;
}
// data is 16 bits with 2000dps range
const float scale = radians(2000.0f) / 32767.0f;
for (uint8_t i = 0; i < num_frames; i++) {
const uint8_t *d = &data[i*6];
int16_t xyz[3] {
int16_t(uint16_t(d[0] | d[1]<<8)),
int16_t(uint16_t(d[2] | d[3]<<8)),
int16_t(uint16_t(d[4] | d[5]<<8)) };
Vector3f gyro(xyz[0], xyz[1], xyz[2]);
gyro *= scale;
_rotate_and_correct_gyro(gyro_instance, gyro);
_notify_new_gyro_raw_sample(gyro_instance, gyro);
}
if (!dev_gyro->check_next_register()) {
_inc_gyro_error_count(gyro_instance);
}
}
bool AP_InertialSensor_BMI088::update()
{
update_accel(accel_instance);
update_gyro(gyro_instance);
return true;
}