mirror of https://github.com/ArduPilot/ardupilot
486 lines
14 KiB
C++
486 lines
14 KiB
C++
/*
|
|
* Location.cpp
|
|
*/
|
|
|
|
#include "Location.h"
|
|
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Terrain/AP_Terrain.h>
|
|
|
|
/// constructors
|
|
Location::Location()
|
|
{
|
|
zero();
|
|
}
|
|
|
|
const Location definitely_zero{};
|
|
bool Location::is_zero(void) const
|
|
{
|
|
return !memcmp(this, &definitely_zero, sizeof(*this));
|
|
}
|
|
|
|
void Location::zero(void)
|
|
{
|
|
memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
// Construct location using position (NEU) from ekf_origin for the given altitude frame
|
|
Location::Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame)
|
|
{
|
|
zero();
|
|
lat = latitude;
|
|
lng = longitude;
|
|
set_alt_cm(alt_in_cm, frame);
|
|
}
|
|
|
|
Location::Location(const Vector3f &ekf_offset_neu, AltFrame frame)
|
|
{
|
|
zero();
|
|
|
|
// store alt and alt frame
|
|
set_alt_cm(ekf_offset_neu.z, frame);
|
|
|
|
// calculate lat, lon
|
|
Location ekf_origin;
|
|
if (AP::ahrs().get_origin(ekf_origin)) {
|
|
lat = ekf_origin.lat;
|
|
lng = ekf_origin.lng;
|
|
offset(ekf_offset_neu.x * 0.01, ekf_offset_neu.y * 0.01);
|
|
}
|
|
}
|
|
|
|
Location::Location(const Vector3d &ekf_offset_neu, AltFrame frame)
|
|
{
|
|
zero();
|
|
|
|
// store alt and alt frame
|
|
set_alt_cm(ekf_offset_neu.z, frame);
|
|
|
|
// calculate lat, lon
|
|
Location ekf_origin;
|
|
if (AP::ahrs().get_origin(ekf_origin)) {
|
|
lat = ekf_origin.lat;
|
|
lng = ekf_origin.lng;
|
|
offset(ekf_offset_neu.x * 0.01, ekf_offset_neu.y * 0.01);
|
|
}
|
|
}
|
|
|
|
void Location::set_alt_cm(int32_t alt_cm, AltFrame frame)
|
|
{
|
|
alt = alt_cm;
|
|
relative_alt = false;
|
|
terrain_alt = false;
|
|
origin_alt = false;
|
|
switch (frame) {
|
|
case AltFrame::ABSOLUTE:
|
|
// do nothing
|
|
break;
|
|
case AltFrame::ABOVE_HOME:
|
|
relative_alt = true;
|
|
break;
|
|
case AltFrame::ABOVE_ORIGIN:
|
|
origin_alt = true;
|
|
break;
|
|
case AltFrame::ABOVE_TERRAIN:
|
|
// we mark it as a relative altitude, as it doesn't have
|
|
// home alt added
|
|
relative_alt = true;
|
|
terrain_alt = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// converts altitude to new frame
|
|
bool Location::change_alt_frame(AltFrame desired_frame)
|
|
{
|
|
int32_t new_alt_cm;
|
|
if (!get_alt_cm(desired_frame, new_alt_cm)) {
|
|
return false;
|
|
}
|
|
set_alt_cm(new_alt_cm, desired_frame);
|
|
return true;
|
|
}
|
|
|
|
// get altitude frame
|
|
Location::AltFrame Location::get_alt_frame() const
|
|
{
|
|
if (terrain_alt) {
|
|
return AltFrame::ABOVE_TERRAIN;
|
|
}
|
|
if (origin_alt) {
|
|
return AltFrame::ABOVE_ORIGIN;
|
|
}
|
|
if (relative_alt) {
|
|
return AltFrame::ABOVE_HOME;
|
|
}
|
|
return AltFrame::ABSOLUTE;
|
|
}
|
|
|
|
/// get altitude in desired frame
|
|
bool Location::get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const
|
|
{
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (!initialised()) {
|
|
AP_HAL::panic("Should not be called on invalid location: Location cannot be (0, 0, 0)");
|
|
}
|
|
#endif
|
|
Location::AltFrame frame = get_alt_frame();
|
|
|
|
// shortcut if desired and underlying frame are the same
|
|
if (desired_frame == frame) {
|
|
ret_alt_cm = alt;
|
|
return true;
|
|
}
|
|
|
|
// check for terrain altitude
|
|
float alt_terr_cm = 0;
|
|
if (frame == AltFrame::ABOVE_TERRAIN || desired_frame == AltFrame::ABOVE_TERRAIN) {
|
|
#if AP_TERRAIN_AVAILABLE
|
|
AP_Terrain *terrain = AP::terrain();
|
|
if (terrain == nullptr) {
|
|
return false;
|
|
}
|
|
if (!terrain->height_amsl(*this, alt_terr_cm)) {
|
|
return false;
|
|
}
|
|
// convert terrain alt to cm
|
|
alt_terr_cm *= 100.0f;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// convert alt to absolute
|
|
int32_t alt_abs = 0;
|
|
switch (frame) {
|
|
case AltFrame::ABSOLUTE:
|
|
alt_abs = alt;
|
|
break;
|
|
case AltFrame::ABOVE_HOME:
|
|
if (!AP::ahrs().home_is_set()) {
|
|
return false;
|
|
}
|
|
alt_abs = alt + AP::ahrs().get_home().alt;
|
|
break;
|
|
case AltFrame::ABOVE_ORIGIN:
|
|
{
|
|
// fail if we cannot get ekf origin
|
|
Location ekf_origin;
|
|
if (!AP::ahrs().get_origin(ekf_origin)) {
|
|
return false;
|
|
}
|
|
alt_abs = alt + ekf_origin.alt;
|
|
}
|
|
break;
|
|
case AltFrame::ABOVE_TERRAIN:
|
|
alt_abs = alt + alt_terr_cm;
|
|
break;
|
|
}
|
|
|
|
// convert absolute to desired frame
|
|
switch (desired_frame) {
|
|
case AltFrame::ABSOLUTE:
|
|
ret_alt_cm = alt_abs;
|
|
return true;
|
|
case AltFrame::ABOVE_HOME:
|
|
if (!AP::ahrs().home_is_set()) {
|
|
return false;
|
|
}
|
|
ret_alt_cm = alt_abs - AP::ahrs().get_home().alt;
|
|
return true;
|
|
case AltFrame::ABOVE_ORIGIN:
|
|
{
|
|
// fail if we cannot get ekf origin
|
|
Location ekf_origin;
|
|
if (!AP::ahrs().get_origin(ekf_origin)) {
|
|
return false;
|
|
}
|
|
ret_alt_cm = alt_abs - ekf_origin.alt;
|
|
return true;
|
|
}
|
|
case AltFrame::ABOVE_TERRAIN:
|
|
ret_alt_cm = alt_abs - alt_terr_cm;
|
|
return true;
|
|
}
|
|
return false; // LCOV_EXCL_LINE - not reachable
|
|
}
|
|
|
|
bool Location::get_vector_xy_from_origin_NE(Vector2f &vec_ne) const
|
|
{
|
|
Location ekf_origin;
|
|
if (!AP::ahrs().get_origin(ekf_origin)) {
|
|
return false;
|
|
}
|
|
vec_ne.x = (lat-ekf_origin.lat) * LATLON_TO_CM;
|
|
vec_ne.y = diff_longitude(lng,ekf_origin.lng) * LATLON_TO_CM * longitude_scale((lat+ekf_origin.lat)/2);
|
|
return true;
|
|
}
|
|
|
|
bool Location::get_vector_from_origin_NEU(Vector3f &vec_neu) const
|
|
{
|
|
// convert lat, lon
|
|
Vector2f vec_ne;
|
|
if (!get_vector_xy_from_origin_NE(vec_ne)) {
|
|
return false;
|
|
}
|
|
vec_neu.x = vec_ne.x;
|
|
vec_neu.y = vec_ne.y;
|
|
|
|
// convert altitude
|
|
int32_t alt_above_origin_cm = 0;
|
|
if (!get_alt_cm(AltFrame::ABOVE_ORIGIN, alt_above_origin_cm)) {
|
|
return false;
|
|
}
|
|
vec_neu.z = alt_above_origin_cm;
|
|
|
|
return true;
|
|
}
|
|
|
|
// return horizontal distance in meters between two locations
|
|
ftype Location::get_distance(const struct Location &loc2) const
|
|
{
|
|
ftype dlat = (ftype)(loc2.lat - lat);
|
|
ftype dlng = ((ftype)diff_longitude(loc2.lng,lng)) * longitude_scale((lat+loc2.lat)/2);
|
|
return norm(dlat, dlng) * LOCATION_SCALING_FACTOR;
|
|
}
|
|
|
|
// return the altitude difference in meters taking into account alt frame.
|
|
bool Location::get_alt_distance(const struct Location &loc2, ftype &distance) const
|
|
{
|
|
int32_t alt1, alt2;
|
|
if (!get_alt_cm(AltFrame::ABSOLUTE, alt1) || !loc2.get_alt_cm(AltFrame::ABSOLUTE, alt2)) {
|
|
return false;
|
|
}
|
|
distance = (alt1 - alt2) * 0.01;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
return the distance in meters in North/East plane as a N/E vector
|
|
from loc1 to loc2
|
|
*/
|
|
Vector2f Location::get_distance_NE(const Location &loc2) const
|
|
{
|
|
return Vector2f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
|
|
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((loc2.lat+lat)/2));
|
|
}
|
|
|
|
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2, NOT CONSIDERING ALT FRAME!
|
|
Vector3f Location::get_distance_NED(const Location &loc2) const
|
|
{
|
|
return Vector3f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
|
|
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2),
|
|
(alt - loc2.alt) * 0.01);
|
|
}
|
|
|
|
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2
|
|
Vector3d Location::get_distance_NED_double(const Location &loc2) const
|
|
{
|
|
return Vector3d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR),
|
|
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2),
|
|
(alt - loc2.alt) * 0.01);
|
|
}
|
|
|
|
Vector2d Location::get_distance_NE_double(const Location &loc2) const
|
|
{
|
|
return Vector2d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR),
|
|
diff_longitude(loc2.lng,lng) * double(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2));
|
|
}
|
|
|
|
Vector2F Location::get_distance_NE_ftype(const Location &loc2) const
|
|
{
|
|
return Vector2F((loc2.lat - lat) * ftype(LOCATION_SCALING_FACTOR),
|
|
diff_longitude(loc2.lng,lng) * ftype(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2));
|
|
}
|
|
|
|
// extrapolate latitude/longitude given distances (in meters) north and east
|
|
void Location::offset_latlng(int32_t &lat, int32_t &lng, ftype ofs_north, ftype ofs_east)
|
|
{
|
|
const int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV;
|
|
const int64_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(lat+dlat/2);
|
|
lat += dlat;
|
|
lat = limit_lattitude(lat);
|
|
lng = wrap_longitude(dlng+lng);
|
|
}
|
|
|
|
// extrapolate latitude/longitude given distances (in meters) north and east
|
|
void Location::offset(ftype ofs_north, ftype ofs_east)
|
|
{
|
|
offset_latlng(lat, lng, ofs_north, ofs_east);
|
|
}
|
|
|
|
/*
|
|
* extrapolate latitude/longitude given bearing and distance
|
|
* Note that this function is accurate to about 1mm at a distance of
|
|
* 100m. This function has the advantage that it works in relative
|
|
* positions, so it keeps the accuracy even when dealing with small
|
|
* distances and floating point numbers
|
|
*/
|
|
void Location::offset_bearing(ftype bearing_deg, ftype distance)
|
|
{
|
|
const ftype ofs_north = cosF(radians(bearing_deg)) * distance;
|
|
const ftype ofs_east = sinF(radians(bearing_deg)) * distance;
|
|
offset(ofs_north, ofs_east);
|
|
}
|
|
|
|
// extrapolate latitude/longitude given bearing, pitch and distance
|
|
void Location::offset_bearing_and_pitch(ftype bearing_deg, ftype pitch_deg, ftype distance)
|
|
{
|
|
const ftype ofs_north = cosF(radians(pitch_deg)) * cosF(radians(bearing_deg)) * distance;
|
|
const ftype ofs_east = cosF(radians(pitch_deg)) * sinF(radians(bearing_deg)) * distance;
|
|
offset(ofs_north, ofs_east);
|
|
const int32_t dalt = sinF(radians(pitch_deg)) * distance *100.0f;
|
|
alt += dalt;
|
|
}
|
|
|
|
|
|
ftype Location::longitude_scale(int32_t lat)
|
|
{
|
|
ftype scale = cosF(lat * (1.0e-7 * DEG_TO_RAD));
|
|
return MAX(scale, 0.01);
|
|
}
|
|
|
|
/*
|
|
* convert invalid waypoint with useful data. return true if location changed
|
|
*/
|
|
bool Location::sanitize(const Location &defaultLoc)
|
|
{
|
|
bool has_changed = false;
|
|
// convert lat/lng=0 to mean current point
|
|
if (lat == 0 && lng == 0) {
|
|
lat = defaultLoc.lat;
|
|
lng = defaultLoc.lng;
|
|
has_changed = true;
|
|
}
|
|
|
|
// convert relative alt=0 to mean current alt
|
|
if (alt == 0 && relative_alt) {
|
|
int32_t defaultLoc_alt;
|
|
if (defaultLoc.get_alt_cm(get_alt_frame(), defaultLoc_alt)) {
|
|
alt = defaultLoc_alt;
|
|
has_changed = true;
|
|
}
|
|
}
|
|
|
|
// limit lat/lng to appropriate ranges
|
|
if (!check_latlng()) {
|
|
lat = defaultLoc.lat;
|
|
lng = defaultLoc.lng;
|
|
has_changed = true;
|
|
}
|
|
|
|
return has_changed;
|
|
}
|
|
|
|
// make sure we know what size the Location object is:
|
|
assert_storage_size<Location, 16> _assert_storage_size_Location;
|
|
|
|
|
|
// return bearing in radians from location to loc2, return is 0 to 2*Pi
|
|
ftype Location::get_bearing(const struct Location &loc2) const
|
|
{
|
|
const int32_t off_x = diff_longitude(loc2.lng,lng);
|
|
const int32_t off_y = (loc2.lat - lat) / loc2.longitude_scale((lat+loc2.lat)/2);
|
|
ftype bearing = (M_PI*0.5) + atan2F(-off_y, off_x);
|
|
if (bearing < 0) {
|
|
bearing += 2*M_PI;
|
|
}
|
|
return bearing;
|
|
}
|
|
|
|
/*
|
|
return true if lat and lng match. Ignores altitude and options
|
|
*/
|
|
bool Location::same_latlon_as(const Location &loc2) const
|
|
{
|
|
return (lat == loc2.lat) && (lng == loc2.lng);
|
|
}
|
|
|
|
// return true when lat and lng are within range
|
|
bool Location::check_latlng() const
|
|
{
|
|
return check_lat(lat) && check_lng(lng);
|
|
}
|
|
|
|
// see if location is past a line perpendicular to
|
|
// the line between point1 and point2 and passing through point2.
|
|
// If point1 is our previous waypoint and point2 is our target waypoint
|
|
// then this function returns true if we have flown past
|
|
// the target waypoint
|
|
bool Location::past_interval_finish_line(const Location &point1, const Location &point2) const
|
|
{
|
|
return this->line_path_proportion(point1, point2) >= 1.0f;
|
|
}
|
|
|
|
/*
|
|
return the proportion we are along the path from point1 to
|
|
point2, along a line parallel to point1<->point2.
|
|
|
|
This will be more than 1 if we have passed point2
|
|
*/
|
|
float Location::line_path_proportion(const Location &point1, const Location &point2) const
|
|
{
|
|
const Vector2f vec1 = point1.get_distance_NE(point2);
|
|
const Vector2f vec2 = point1.get_distance_NE(*this);
|
|
const ftype dsquared = sq(vec1.x) + sq(vec1.y);
|
|
if (dsquared < 0.001f) {
|
|
// the two points are very close together
|
|
return 1.0f;
|
|
}
|
|
return (vec1 * vec2) / dsquared;
|
|
}
|
|
|
|
/*
|
|
wrap longitude for -180e7 to 180e7
|
|
*/
|
|
int32_t Location::wrap_longitude(int64_t lon)
|
|
{
|
|
if (lon > 1800000000L) {
|
|
lon = int32_t(lon-3600000000LL);
|
|
} else if (lon < -1800000000L) {
|
|
lon = int32_t(lon+3600000000LL);
|
|
}
|
|
return int32_t(lon);
|
|
}
|
|
|
|
/*
|
|
get lon1-lon2, wrapping at -180e7 to 180e7
|
|
*/
|
|
int32_t Location::diff_longitude(int32_t lon1, int32_t lon2)
|
|
{
|
|
if ((lon1 & 0x80000000) == (lon2 & 0x80000000)) {
|
|
// common case of same sign
|
|
return lon1 - lon2;
|
|
}
|
|
int64_t dlon = int64_t(lon1)-int64_t(lon2);
|
|
if (dlon > 1800000000LL) {
|
|
dlon -= 3600000000LL;
|
|
} else if (dlon < -1800000000LL) {
|
|
dlon += 3600000000LL;
|
|
}
|
|
return int32_t(dlon);
|
|
}
|
|
|
|
/*
|
|
limit lattitude to -90e7 to 90e7
|
|
*/
|
|
int32_t Location::limit_lattitude(int32_t lat)
|
|
{
|
|
if (lat > 900000000L) {
|
|
lat = 1800000000LL - lat;
|
|
} else if (lat < -900000000L) {
|
|
lat = -(1800000000LL + lat);
|
|
}
|
|
return lat;
|
|
}
|
|
|
|
// update altitude and alt-frame base on this location's horizontal position between point1 and point2
|
|
// this location's lat,lon is used to calculate the alt of the closest point on the line between point1 and point2
|
|
// origin and destination's altitude frames must be the same
|
|
// this alt-frame will be updated to match the destination alt frame
|
|
void Location::linearly_interpolate_alt(const Location &point1, const Location &point2)
|
|
{
|
|
// new target's distance along the original track and then linear interpolate between the original origin and destination altitudes
|
|
set_alt_cm(point1.alt + (point2.alt - point1.alt) * constrain_float(line_path_proportion(point1, point2), 0.0f, 1.0f), point2.get_alt_frame());
|
|
}
|