ardupilot/AntennaTracker/Tracker.h

239 lines
8.7 KiB
C++

/*
Lead developers: Matthew Ridley and Andrew Tridgell
Please contribute your ideas! See https://ardupilot.org/dev for details
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <stdarg.h>
#include <stdio.h>
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_AHRS/AP_AHRS.h> // ArduPilot Mega DCM Library
#include <Filter/Filter.h> // Filter library
#include <AP_Logger/AP_Logger.h>
#include <AP_Scheduler/AP_Scheduler.h> // main loop scheduler
#include <AP_NavEKF2/AP_NavEKF2.h>
#include <AP_NavEKF3/AP_NavEKF3.h>
#include <SRV_Channel/SRV_Channel.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_Mission/AP_Mission.h>
#include <AP_Stats/AP_Stats.h> // statistics library
#include <AP_BattMonitor/AP_BattMonitor.h> // Battery monitor library
// Configuration
#include "config.h"
#include "defines.h"
#include "RC_Channel.h"
#include "Parameters.h"
#include "GCS_Mavlink.h"
#include "GCS_Tracker.h"
#include "AP_Arming.h"
#if AP_SCRIPTING_ENABLED
#include <AP_Scripting/AP_Scripting.h>
#endif
#include "mode.h"
class Tracker : public AP_Vehicle {
public:
friend class GCS_MAVLINK_Tracker;
friend class GCS_Tracker;
friend class Parameters;
friend class ModeAuto;
friend class ModeGuided;
friend class Mode;
Tracker(void);
void arm_servos();
void disarm_servos();
private:
Parameters g;
uint32_t start_time_ms = 0;
AP_Logger logger;
/**
antenna control channels
*/
RC_Channels_Tracker rc_channels;
SRV_Channels servo_channels;
LowPassFilterFloat yaw_servo_out_filt;
LowPassFilterFloat pitch_servo_out_filt;
bool yaw_servo_out_filt_init = false;
bool pitch_servo_out_filt_init = false;
GCS_Tracker _gcs; // avoid using this; use gcs()
GCS_Tracker &gcs() { return _gcs; }
AP_Stats stats;
// Battery Sensors
AP_BattMonitor battery{MASK_LOG_CURRENT,
FUNCTOR_BIND_MEMBER(&Tracker::handle_battery_failsafe, void, const char*, const int8_t),
nullptr};
struct Location current_loc;
Mode *mode_from_mode_num(enum Mode::Number num);
Mode *mode = &mode_initialising;
ModeAuto mode_auto;
ModeInitialising mode_initialising;
ModeManual mode_manual;
ModeGuided mode_guided;
ModeScan mode_scan;
ModeServoTest mode_servotest;
ModeStop mode_stop;
#if AP_SCRIPTING_ENABLED
AP_Scripting scripting;
#endif
// Vehicle state
struct {
bool location_valid; // true if we have a valid location for the vehicle
Location location; // lat, long in degrees * 10^7; alt in meters * 100
Location location_estimate; // lat, long in degrees * 10^7; alt in meters * 100
uint32_t last_update_us; // last position update in microseconds
uint32_t last_update_ms; // last position update in milliseconds
Vector3f vel; // the vehicle's velocity in m/s
int32_t relative_alt; // the vehicle's relative altitude in meters * 100
} vehicle;
// Navigation controller state
struct NavStatus {
float bearing; // bearing to vehicle in centi-degrees
float distance; // distance to vehicle in meters
float pitch; // pitch to vehicle in degrees (positive means vehicle is above tracker, negative means below)
float angle_error_pitch; // angle error between target and current pitch in centi-degrees
float angle_error_yaw; // angle error between target and current yaw in centi-degrees
float alt_difference_baro; // altitude difference between tracker and vehicle in meters according to the barometer. positive value means vehicle is above tracker
float alt_difference_gps; // altitude difference between tracker and vehicle in meters according to the gps. positive value means vehicle is above tracker
float altitude_offset; // offset in meters which is added to tracker altitude to align altitude measurements with vehicle's barometer
bool manual_control_yaw : 1;// true if tracker yaw is under manual control
bool manual_control_pitch : 1;// true if tracker pitch is manually controlled
bool need_altitude_calibration : 1;// true if tracker altitude has not been determined (true after startup)
bool scan_reverse_pitch : 1;// controls direction of pitch movement in SCAN mode
bool scan_reverse_yaw : 1;// controls direction of yaw movement in SCAN mode
} nav_status;
// setup the var_info table
AP_Param param_loader{var_info};
bool target_set = false;
bool stationary = true; // are we using the start lat and log?
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const struct LogStructure log_structure[];
// Tracker.cpp
void get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit) override;
void one_second_loop();
void ten_hz_logging_loop();
void stats_update();
// GCS_Mavlink.cpp
void send_nav_controller_output(mavlink_channel_t chan);
// Log.cpp
void Log_Write_Attitude();
void Log_Write_Vehicle_Baro(float pressure, float altitude);
void Log_Write_Vehicle_Pos(int32_t lat,int32_t lng,int32_t alt, const Vector3f& vel);
void Log_Write_Vehicle_Startup_Messages();
void log_init(void);
// Parameters.cpp
void load_parameters(void) override;
// radio.cpp
void read_radio();
// sensors.cpp
void update_ahrs();
void compass_save();
void update_compass(void);
void update_GPS(void);
void handle_battery_failsafe(const char* type_str, const int8_t action);
// servos.cpp
void init_servos();
void update_pitch_servo(float pitch);
void update_pitch_position_servo(void);
void update_pitch_onoff_servo(float pitch) const;
void update_pitch_cr_servo(float pitch);
void update_yaw_servo(float yaw);
void update_yaw_position_servo(void);
void update_yaw_onoff_servo(float yaw) const;
void update_yaw_cr_servo(float yaw);
// system.cpp
void init_ardupilot() override;
bool get_home_eeprom(struct Location &loc) const;
bool set_home_eeprom(const Location &temp) WARN_IF_UNUSED;
bool set_home(const Location &temp) WARN_IF_UNUSED;
void prepare_servos();
void set_mode(Mode &newmode, ModeReason reason);
bool set_mode(uint8_t new_mode, ModeReason reason) override;
uint8_t get_mode() const override { return (uint8_t)mode->number(); }
bool should_log(uint32_t mask);
bool start_command_callback(const AP_Mission::Mission_Command& cmd) { return false; }
void exit_mission_callback() { return; }
bool verify_command_callback(const AP_Mission::Mission_Command& cmd) { return false; }
// tracking.cpp
void update_vehicle_pos_estimate();
void update_tracker_position();
void update_bearing_and_distance();
void update_tracking(void);
void tracking_update_position(const mavlink_global_position_int_t &msg);
void tracking_update_pressure(const mavlink_scaled_pressure_t &msg);
void tracking_manual_control(const mavlink_manual_control_t &msg);
void update_armed_disarmed() const;
bool get_pan_tilt_norm(float &pan_norm, float &tilt_norm) const override;
// Arming/Disarming management class
AP_Arming_Tracker arming;
// Mission library
AP_Mission mission{
FUNCTOR_BIND_MEMBER(&Tracker::start_command_callback, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Tracker::verify_command_callback, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Tracker::exit_mission_callback, void)};
};
extern Tracker tracker;