mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
426 lines
16 KiB
C++
426 lines
16 KiB
C++
/*
|
||
This program is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
//
|
||
// Septentrio GPS driver for ArduPilot.
|
||
// Code by Michael Oborne
|
||
//
|
||
|
||
#define ALLOW_DOUBLE_MATH_FUNCTIONS
|
||
|
||
#include "AP_GPS.h"
|
||
#include "AP_GPS_SBF.h"
|
||
#include <GCS_MAVLink/GCS.h>
|
||
|
||
extern const AP_HAL::HAL& hal;
|
||
|
||
#define SBF_DEBUGGING 0
|
||
|
||
#if SBF_DEBUGGING
|
||
# define Debug(fmt, args ...) \
|
||
do { \
|
||
hal.console->printf("%s:%d: " fmt "\n", \
|
||
__FUNCTION__, __LINE__, \
|
||
## args); \
|
||
hal.scheduler->delay(1); \
|
||
} while(0)
|
||
#else
|
||
# define Debug(fmt, args ...)
|
||
#endif
|
||
|
||
#define SBF_EXCESS_COMMAND_BYTES 5 // 2 start bytes + validity byte + space byte + endline byte
|
||
|
||
#define RX_ERROR_MASK (CONGESTION | \
|
||
MISSEDEVENT | \
|
||
CPUOVERLOAD | \
|
||
INVALIDCONFIG | \
|
||
OUTOFGEOFENCE)
|
||
|
||
|
||
AP_GPS_SBF::AP_GPS_SBF(AP_GPS &_gps, AP_GPS::GPS_State &_state,
|
||
AP_HAL::UARTDriver *_port) :
|
||
AP_GPS_Backend(_gps, _state, _port)
|
||
{
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
|
||
port->write((const uint8_t*)_port_enable, strlen(_port_enable));
|
||
_config_last_ack_time = AP_HAL::millis();
|
||
}
|
||
|
||
// Process all bytes available from the stream
|
||
//
|
||
bool
|
||
AP_GPS_SBF::read(void)
|
||
{
|
||
bool ret = false;
|
||
uint32_t available_bytes = port->available();
|
||
for (uint32_t i = 0; i < available_bytes; i++) {
|
||
uint8_t temp = port->read();
|
||
ret |= parse(temp);
|
||
}
|
||
|
||
if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE) {
|
||
if (_init_blob_index < ARRAY_SIZE(_initialisation_blob)) {
|
||
uint32_t now = AP_HAL::millis();
|
||
const char *init_str = _initialisation_blob[_init_blob_index];
|
||
|
||
if (now > _init_blob_time) {
|
||
if (now > _config_last_ack_time + 2500) {
|
||
// try to enable input on the GPS port if we have not made progress on configuring it
|
||
Debug("SBF Sending port enable");
|
||
port->write((const uint8_t*)_port_enable, strlen(_port_enable));
|
||
_config_last_ack_time = now;
|
||
} else {
|
||
Debug("SBF sending init string: %s", init_str);
|
||
port->write((const uint8_t*)init_str, strlen(init_str));
|
||
}
|
||
_init_blob_time = now + 1000;
|
||
}
|
||
} else if (gps._raw_data == 2) { // only manage disarm/rearms when the user opts into it
|
||
if (hal.util->get_soft_armed()) {
|
||
_has_been_armed = true;
|
||
} else if (_has_been_armed && (RxState & SBF_DISK_MOUNTED)) {
|
||
// since init is done at this point and unmounting should be rate limited,
|
||
// take over the _init_blob_time variable
|
||
uint32_t now = AP_HAL::millis();
|
||
if (now > _init_blob_time) {
|
||
unmount_disk();
|
||
_init_blob_time = now + 1000;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
bool
|
||
AP_GPS_SBF::parse(uint8_t temp)
|
||
{
|
||
switch (sbf_msg.sbf_state)
|
||
{
|
||
default:
|
||
case sbf_msg_parser_t::PREAMBLE1:
|
||
if (temp == SBF_PREAMBLE1) {
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE2;
|
||
sbf_msg.read = 0;
|
||
}
|
||
break;
|
||
case sbf_msg_parser_t::PREAMBLE2:
|
||
if (temp == SBF_PREAMBLE2) {
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::CRC1;
|
||
} else if (temp == 'R') {
|
||
Debug("SBF got a response\n");
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::COMMAND_LINE;
|
||
}
|
||
else
|
||
{
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
}
|
||
break;
|
||
case sbf_msg_parser_t::CRC1:
|
||
sbf_msg.crc = temp;
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::CRC2;
|
||
break;
|
||
case sbf_msg_parser_t::CRC2:
|
||
sbf_msg.crc += (uint16_t)(temp << 8);
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID1;
|
||
break;
|
||
case sbf_msg_parser_t::BLOCKID1:
|
||
sbf_msg.blockid = temp;
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID2;
|
||
break;
|
||
case sbf_msg_parser_t::BLOCKID2:
|
||
sbf_msg.blockid += (uint16_t)(temp << 8);
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH1;
|
||
break;
|
||
case sbf_msg_parser_t::LENGTH1:
|
||
sbf_msg.length = temp;
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH2;
|
||
break;
|
||
case sbf_msg_parser_t::LENGTH2:
|
||
sbf_msg.length += (uint16_t)(temp << 8);
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::DATA;
|
||
if (sbf_msg.length % 4 != 0) {
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
Debug("bad packet length=%u\n", (unsigned)sbf_msg.length);
|
||
}
|
||
if (sbf_msg.length < 8) {
|
||
Debug("bad packet length=%u\n", (unsigned)sbf_msg.length);
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
crc_error_counter++; // this is a probable buffer overflow, but this
|
||
// indicates not enough bytes to do a crc
|
||
break;
|
||
}
|
||
break;
|
||
case sbf_msg_parser_t::DATA:
|
||
if (sbf_msg.read < sizeof(sbf_msg.data)) {
|
||
sbf_msg.data.bytes[sbf_msg.read] = temp;
|
||
}
|
||
sbf_msg.read++;
|
||
if (sbf_msg.read >= (sbf_msg.length - 8)) {
|
||
if (sbf_msg.read > sizeof(sbf_msg.data)) {
|
||
// not interested in these large messages
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
break;
|
||
}
|
||
uint16_t crc = crc16_ccitt((uint8_t*)&sbf_msg.blockid, 2, 0);
|
||
crc = crc16_ccitt((uint8_t*)&sbf_msg.length, 2, crc);
|
||
crc = crc16_ccitt((uint8_t*)&sbf_msg.data, sbf_msg.length - 8, crc);
|
||
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
|
||
if (sbf_msg.crc == crc) {
|
||
return process_message();
|
||
} else {
|
||
Debug("crc fail\n");
|
||
crc_error_counter++;
|
||
}
|
||
}
|
||
break;
|
||
case sbf_msg_parser_t::COMMAND_LINE:
|
||
if (sbf_msg.read < (sizeof(sbf_msg.data) - 1)) {
|
||
sbf_msg.data.bytes[sbf_msg.read] = temp;
|
||
} else {
|
||
// we don't have enough buffer to compare the commands
|
||
// most probable cause is that a user injected a longer command then
|
||
// we have buffer for, or it could be a corruption, either way we
|
||
// simply ignore the result
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
break;
|
||
}
|
||
sbf_msg.read++;
|
||
if (temp == '\n') {
|
||
sbf_msg.data.bytes[sbf_msg.read] = 0;
|
||
|
||
// received the result, lets assess it
|
||
if (sbf_msg.data.bytes[0] == ':') {
|
||
// valid command, determine if it was the one we were trying
|
||
// to send in the configuration sequence
|
||
if (_init_blob_index < ARRAY_SIZE(_initialisation_blob)) {
|
||
if (!strncmp(_initialisation_blob[_init_blob_index], (char *)(sbf_msg.data.bytes + 2),
|
||
sbf_msg.read - SBF_EXCESS_COMMAND_BYTES)) {
|
||
Debug("SBF Ack Command: %s\n", sbf_msg.data.bytes);
|
||
_init_blob_index++;
|
||
_config_last_ack_time = AP_HAL::millis();
|
||
} else {
|
||
Debug("SBF Ack command (unexpected): %s\n", sbf_msg.data.bytes);
|
||
}
|
||
}
|
||
} else {
|
||
// rejected command, send it out as a debug
|
||
Debug("SBF NACK Command: %s\n", sbf_msg.data.bytes);
|
||
}
|
||
// resume normal parsing
|
||
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool
|
||
AP_GPS_SBF::process_message(void)
|
||
{
|
||
uint16_t blockid = (sbf_msg.blockid & 8191u);
|
||
|
||
Debug("BlockID %d", blockid);
|
||
|
||
switch (blockid) {
|
||
case PVTGeodetic:
|
||
{
|
||
const msg4007 &temp = sbf_msg.data.msg4007u;
|
||
|
||
// Update time state
|
||
if (temp.WNc != 65535) {
|
||
state.time_week = temp.WNc;
|
||
state.time_week_ms = (uint32_t)(temp.TOW);
|
||
}
|
||
|
||
check_new_itow(temp.TOW, sbf_msg.length);
|
||
state.last_gps_time_ms = AP_HAL::millis();
|
||
|
||
// Update velocity state (don't use −2·10^10)
|
||
if (temp.Vn > -200000) {
|
||
state.velocity.x = (float)(temp.Vn);
|
||
state.velocity.y = (float)(temp.Ve);
|
||
state.velocity.z = (float)(-temp.Vu);
|
||
|
||
state.have_vertical_velocity = true;
|
||
|
||
float ground_vector_sq = state.velocity[0] * state.velocity[0] + state.velocity[1] * state.velocity[1];
|
||
state.ground_speed = (float)safe_sqrt(ground_vector_sq);
|
||
|
||
state.ground_course = wrap_360(degrees(atan2f(state.velocity[1], state.velocity[0])));
|
||
state.rtk_age_ms = temp.MeanCorrAge * 10;
|
||
|
||
// value is expressed as twice the rms error = int16 * 0.01/2
|
||
state.horizontal_accuracy = (float)temp.HAccuracy * 0.005f;
|
||
state.vertical_accuracy = (float)temp.VAccuracy * 0.005f;
|
||
state.have_horizontal_accuracy = true;
|
||
state.have_vertical_accuracy = true;
|
||
}
|
||
|
||
// Update position state (don't use -2·10^10)
|
||
if (temp.Latitude > -200000) {
|
||
state.location.lat = (int32_t)(temp.Latitude * RAD_TO_DEG_DOUBLE * (double)1e7);
|
||
state.location.lng = (int32_t)(temp.Longitude * RAD_TO_DEG_DOUBLE * (double)1e7);
|
||
state.location.alt = (int32_t)(((float)temp.Height - temp.Undulation) * 1e2f);
|
||
}
|
||
|
||
if (temp.NrSV != 255) {
|
||
state.num_sats = temp.NrSV;
|
||
}
|
||
|
||
Debug("temp.Mode=0x%02x\n", (unsigned)temp.Mode);
|
||
switch (temp.Mode & 15) {
|
||
case 0: // no pvt
|
||
state.status = AP_GPS::NO_FIX;
|
||
break;
|
||
case 1: // standalone
|
||
state.status = AP_GPS::GPS_OK_FIX_3D;
|
||
break;
|
||
case 2: // dgps
|
||
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
|
||
break;
|
||
case 3: // fixed location
|
||
state.status = AP_GPS::GPS_OK_FIX_3D;
|
||
break;
|
||
case 4: // rtk fixed
|
||
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
|
||
break;
|
||
case 5: // rtk float
|
||
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
|
||
break;
|
||
case 6: // sbas
|
||
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
|
||
break;
|
||
case 7: // moving rtk fixed
|
||
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
|
||
break;
|
||
case 8: // moving rtk float
|
||
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
|
||
break;
|
||
}
|
||
|
||
if ((temp.Mode & 64) > 0) { // gps is in base mode
|
||
state.status = AP_GPS::NO_FIX;
|
||
} else if ((temp.Mode & 128) > 0) { // gps only has 2d fix
|
||
state.status = AP_GPS::GPS_OK_FIX_2D;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
case DOP:
|
||
{
|
||
const msg4001 &temp = sbf_msg.data.msg4001u;
|
||
check_new_itow(temp.TOW, sbf_msg.length);
|
||
|
||
state.hdop = temp.HDOP;
|
||
state.vdop = temp.VDOP;
|
||
break;
|
||
}
|
||
case ReceiverStatus:
|
||
{
|
||
const msg4014 &temp = sbf_msg.data.msg4014u;
|
||
check_new_itow(temp.TOW, sbf_msg.length);
|
||
RxState = temp.RxState;
|
||
if ((RxError & RX_ERROR_MASK) != (temp.RxError & RX_ERROR_MASK)) {
|
||
gcs().send_text(MAV_SEVERITY_INFO, "GPS %u: SBF error changed (0x%08x/0x%08x)", (unsigned int)(state.instance + 1),
|
||
(unsigned int)(RxError & RX_ERROR_MASK), (unsigned int)(temp.RxError & RX_ERROR_MASK));
|
||
}
|
||
RxError = temp.RxError;
|
||
break;
|
||
}
|
||
case VelCovGeodetic:
|
||
{
|
||
const msg5908 &temp = sbf_msg.data.msg5908u;
|
||
|
||
check_new_itow(temp.TOW, sbf_msg.length);
|
||
// select the maximum variance, as the EKF will apply it to all the columns in it's estimate
|
||
// FIXME: Support returning the covariance matrix to the EKF
|
||
float max_variance_squared = MAX(temp.Cov_VnVn, MAX(temp.Cov_VeVe, temp.Cov_VuVu));
|
||
if (is_positive(max_variance_squared)) {
|
||
state.have_speed_accuracy = true;
|
||
state.speed_accuracy = sqrt(max_variance_squared);
|
||
} else {
|
||
state.have_speed_accuracy = false;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void AP_GPS_SBF::broadcast_configuration_failure_reason(void) const
|
||
{
|
||
if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE &&
|
||
_init_blob_index < ARRAY_SIZE(_initialisation_blob)) {
|
||
gcs().send_text(MAV_SEVERITY_INFO, "GPS %u: SBF is not fully configured (%u/%u)", state.instance + 1,
|
||
_init_blob_index, (unsigned)ARRAY_SIZE(_initialisation_blob));
|
||
}
|
||
}
|
||
|
||
bool AP_GPS_SBF::is_configured (void) {
|
||
return (gps._auto_config == AP_GPS::GPS_AUTO_CONFIG_DISABLE ||
|
||
_init_blob_index >= ARRAY_SIZE(_initialisation_blob));
|
||
}
|
||
|
||
bool AP_GPS_SBF::is_healthy (void) const {
|
||
return (RxError & RX_ERROR_MASK) == 0;
|
||
}
|
||
|
||
void AP_GPS_SBF::mount_disk (void) const {
|
||
const char* command = "emd, DSK1, Mount\n";
|
||
Debug("Mounting disk");
|
||
port->write((const uint8_t*)command, strlen(command));
|
||
}
|
||
|
||
void AP_GPS_SBF::unmount_disk (void) const {
|
||
const char* command = "emd, DSK1, Unmount\n";
|
||
Debug("Unmounting disk");
|
||
port->write((const uint8_t*)command, strlen(command));
|
||
}
|
||
|
||
bool AP_GPS_SBF::prepare_for_arming(void) {
|
||
bool is_logging = true; // assume that its logging until proven otherwise
|
||
if (gps._raw_data) {
|
||
if (!(RxState & SBF_DISK_MOUNTED)){
|
||
is_logging = false;
|
||
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF disk is not mounted", state.instance + 1);
|
||
|
||
// simply attempt to mount the disk, no need to check if the command was
|
||
// ACK/NACK'd as we don't continuously attempt to remount the disk
|
||
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: Attempting to mount disk", state.instance + 1);
|
||
mount_disk();
|
||
// reset the flag to indicate if we should be logging
|
||
_has_been_armed = false;
|
||
}
|
||
else if (RxState & SBF_DISK_FULL) {
|
||
is_logging = false;
|
||
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF disk is full", state.instance + 1);
|
||
}
|
||
else if (!(RxState & SBF_DISK_ACTIVITY)) {
|
||
is_logging = false;
|
||
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF is not currently logging", state.instance + 1);
|
||
}
|
||
}
|
||
|
||
return is_logging;
|
||
}
|