mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 23:28:32 -04:00
9cf9fc152b
Use pthread's barrier so we don't keep waking up threads with possibly higher priority during initialization phase. This also synchronizes all of them to a single point. With the previous approach it was possible (but unlikely) that a thread hadn't reach the synchronization point when main thread signalize "system initialized".
448 lines
11 KiB
C++
448 lines
11 KiB
C++
#include "Scheduler.h"
|
|
|
|
#include <algorithm>
|
|
#include <errno.h>
|
|
#include <poll.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "RCInput.h"
|
|
#include "RPIOUARTDriver.h"
|
|
#include "SPIUARTDriver.h"
|
|
#include "Storage.h"
|
|
#include "UARTDriver.h"
|
|
#include "Util.h"
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_QFLIGHT
|
|
#include <rpcmem.h>
|
|
#include <AP_HAL_Linux/qflight/qflight_util.h>
|
|
#include <AP_HAL_Linux/qflight/qflight_dsp.h>
|
|
#include <AP_HAL_Linux/qflight/qflight_buffer.h>
|
|
#endif
|
|
|
|
using namespace Linux;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define APM_LINUX_TIMER_PRIORITY 15
|
|
#define APM_LINUX_UART_PRIORITY 14
|
|
#define APM_LINUX_RCIN_PRIORITY 13
|
|
#define APM_LINUX_MAIN_PRIORITY 12
|
|
#define APM_LINUX_TONEALARM_PRIORITY 11
|
|
#define APM_LINUX_IO_PRIORITY 10
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || \
|
|
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \
|
|
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH || \
|
|
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI
|
|
#define APM_LINUX_UART_PERIOD 10000
|
|
#define APM_LINUX_RCIN_PERIOD 500
|
|
#define APM_LINUX_TONEALARM_PERIOD 10000
|
|
#define APM_LINUX_IO_PERIOD 20000
|
|
#else
|
|
#define APM_LINUX_UART_PERIOD 10000
|
|
#define APM_LINUX_RCIN_PERIOD 10000
|
|
#define APM_LINUX_TONEALARM_PERIOD 10000
|
|
#define APM_LINUX_IO_PERIOD 20000
|
|
#endif // CONFIG_HAL_BOARD_SUBTYPE
|
|
|
|
Scheduler::Scheduler()
|
|
{ }
|
|
|
|
void Scheduler::init()
|
|
{
|
|
mlockall(MCL_CURRENT|MCL_FUTURE);
|
|
|
|
if (geteuid() != 0) {
|
|
printf("WARNING: running as non-root. Will not use realtime scheduling\n");
|
|
}
|
|
|
|
struct sched_param param = { .sched_priority = APM_LINUX_MAIN_PRIORITY };
|
|
sched_setscheduler(0, SCHED_FIFO, ¶m);
|
|
|
|
/* set barrier to 6 threads: worker threads below + main thread */
|
|
pthread_barrier_init(&_initialized_barrier, nullptr, 6);
|
|
_timer_thread.start("sched-timer", SCHED_FIFO, APM_LINUX_TIMER_PRIORITY);
|
|
_uart_thread.start("sched-uart", SCHED_FIFO, APM_LINUX_UART_PRIORITY);
|
|
_rcin_thread.start("sched-rcin", SCHED_FIFO, APM_LINUX_RCIN_PRIORITY);
|
|
_tonealarm_thread.start("sched-tonealarm", SCHED_FIFO, APM_LINUX_TONEALARM_PRIORITY);
|
|
_io_thread.start("sched-io", SCHED_FIFO, APM_LINUX_IO_PRIORITY);
|
|
}
|
|
|
|
void Scheduler::microsleep(uint32_t usec)
|
|
{
|
|
struct timespec ts;
|
|
ts.tv_sec = 0;
|
|
ts.tv_nsec = usec*1000UL;
|
|
while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ;
|
|
}
|
|
|
|
void Scheduler::delay(uint16_t ms)
|
|
{
|
|
if (_stopped_clock_usec) {
|
|
return;
|
|
}
|
|
uint64_t start = AP_HAL::millis64();
|
|
|
|
while ((AP_HAL::millis64() - start) < ms) {
|
|
// this yields the CPU to other apps
|
|
microsleep(1000);
|
|
if (_min_delay_cb_ms <= ms) {
|
|
if (_delay_cb) {
|
|
_delay_cb();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Scheduler::delay_microseconds(uint16_t us)
|
|
{
|
|
if (_stopped_clock_usec) {
|
|
return;
|
|
}
|
|
microsleep(us);
|
|
}
|
|
|
|
void Scheduler::register_delay_callback(AP_HAL::Proc proc,
|
|
uint16_t min_time_ms)
|
|
{
|
|
_delay_cb = proc;
|
|
_min_delay_cb_ms = min_time_ms;
|
|
}
|
|
|
|
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
_num_timer_procs++;
|
|
} else {
|
|
hal.console->printf("Out of timer processes\n");
|
|
}
|
|
}
|
|
|
|
bool Scheduler::register_timer_process(AP_HAL::MemberProc proc,
|
|
uint8_t freq_div)
|
|
{
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
|
|
if (freq_div > 1) {
|
|
return _register_timesliced_proc(proc, freq_div);
|
|
}
|
|
/* fallback to normal timer process */
|
|
#endif
|
|
register_timer_process(proc);
|
|
return false;
|
|
}
|
|
|
|
bool Scheduler::_register_timesliced_proc(AP_HAL::MemberProc proc,
|
|
uint8_t freq_div)
|
|
{
|
|
unsigned int i, j;
|
|
uint8_t distance, min_distance, best_distance;
|
|
uint8_t best_timeslot;
|
|
|
|
if (_num_timesliced_procs > LINUX_SCHEDULER_MAX_TIMESLICED_PROCS) {
|
|
hal.console->printf("Out of timesliced processes\n");
|
|
return false;
|
|
}
|
|
|
|
/* if max_freq_div increases, update the timeslots accordingly */
|
|
if (freq_div > _max_freq_div) {
|
|
for (i = 0; i < _num_timesliced_procs; i++) {
|
|
_timesliced_proc[i].timeslot = _timesliced_proc[i].timeslot
|
|
/ _max_freq_div * freq_div;
|
|
}
|
|
_max_freq_div = freq_div;
|
|
}
|
|
|
|
best_distance = 0;
|
|
best_timeslot = 0;
|
|
|
|
/* Look for the timeslot that maximizes the min distance with other timeslots */
|
|
for (i = 0; i < _max_freq_div; i++) {
|
|
min_distance = _max_freq_div;
|
|
for (j = 0; j < _num_timesliced_procs; j++) {
|
|
distance = std::min(i - _timesliced_proc[j].timeslot,
|
|
_max_freq_div + _timesliced_proc[j].timeslot - i);
|
|
if (distance < min_distance) {
|
|
min_distance = distance;
|
|
if (min_distance == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (min_distance > best_distance) {
|
|
best_distance = min_distance;
|
|
best_timeslot = i;
|
|
}
|
|
}
|
|
|
|
_timesliced_proc[_num_timesliced_procs].proc = proc;
|
|
_timesliced_proc[_num_timesliced_procs].timeslot = best_timeslot;
|
|
_timesliced_proc[_num_timesliced_procs].freq_div = freq_div;
|
|
_num_timesliced_procs++;
|
|
return true;
|
|
}
|
|
|
|
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_io_procs < LINUX_SCHEDULER_MAX_IO_PROCS) {
|
|
_io_proc[_num_io_procs] = proc;
|
|
_num_io_procs++;
|
|
} else {
|
|
hal.console->printf("Out of IO processes\n");
|
|
}
|
|
}
|
|
|
|
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
|
|
{
|
|
_failsafe = failsafe;
|
|
}
|
|
|
|
void Scheduler::suspend_timer_procs()
|
|
{
|
|
if (!_timer_semaphore.take(0)) {
|
|
printf("Failed to take timer semaphore\n");
|
|
}
|
|
}
|
|
|
|
void Scheduler::resume_timer_procs()
|
|
{
|
|
_timer_semaphore.give();
|
|
}
|
|
|
|
void Scheduler::_run_timers(bool called_from_timer_thread)
|
|
{
|
|
int i;
|
|
|
|
if (_in_timer_proc) {
|
|
return;
|
|
}
|
|
_in_timer_proc = true;
|
|
|
|
if (!_timer_semaphore.take(0)) {
|
|
printf("Failed to take timer semaphore in _run_timers\n");
|
|
}
|
|
// now call the timer based drivers
|
|
for (i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i]) {
|
|
_timer_proc[i]();
|
|
}
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
|
|
//SPI UART use SPI
|
|
if (!((RPIOUARTDriver *)hal.uartC)->isExternal() )
|
|
{
|
|
((RPIOUARTDriver *)hal.uartC)->_timer_tick();
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < _num_timesliced_procs; i++) {
|
|
if ((_timeslices_count + _timesliced_proc[i].timeslot)
|
|
% _timesliced_proc[i].freq_div == 0) {
|
|
_timesliced_proc[i].proc();
|
|
}
|
|
}
|
|
|
|
if (_max_freq_div != 0) {
|
|
_timeslices_count++;
|
|
if (_timeslices_count == _max_freq_div) {
|
|
_timeslices_count = 0;
|
|
}
|
|
}
|
|
|
|
_timer_semaphore.give();
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != NULL) {
|
|
_failsafe();
|
|
}
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
void Scheduler::_timer_task()
|
|
{
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_QFLIGHT
|
|
printf("Initialising rpcmem\n");
|
|
rpcmem_init();
|
|
#endif
|
|
|
|
/*
|
|
this aims to run at an average of 1kHz, so that it can be used
|
|
to drive 1kHz processes without drift
|
|
*/
|
|
uint64_t next_run_usec = AP_HAL::micros64() + 1000;
|
|
while (true) {
|
|
uint64_t dt = next_run_usec - AP_HAL::micros64();
|
|
if (dt > 2000) {
|
|
// we've lost sync - restart
|
|
next_run_usec = AP_HAL::micros64();
|
|
} else {
|
|
microsleep(dt);
|
|
}
|
|
next_run_usec += 1000;
|
|
// run registered timers
|
|
_run_timers(true);
|
|
|
|
#if HAL_LINUX_UARTS_ON_TIMER_THREAD
|
|
/*
|
|
some boards require that UART calls happen on the same
|
|
thread as other calls of the same time. This impacts the
|
|
QFLIGHT calls where UART output is an RPC call to the DSPs
|
|
*/
|
|
_run_uarts();
|
|
RCInput::from(hal.rcin)->_timer_tick();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void Scheduler::_run_io(void)
|
|
{
|
|
if (!_io_semaphore.take(0)) {
|
|
return;
|
|
}
|
|
|
|
// now call the IO based drivers
|
|
for (int i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i]) {
|
|
_io_proc[i]();
|
|
}
|
|
}
|
|
|
|
_io_semaphore.give();
|
|
}
|
|
|
|
void Scheduler::_rcin_task()
|
|
{
|
|
while (true) {
|
|
microsleep(APM_LINUX_RCIN_PERIOD);
|
|
#if !HAL_LINUX_UARTS_ON_TIMER_THREAD
|
|
RCInput::from(hal.rcin)->_timer_tick();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
run timers for all UARTs
|
|
*/
|
|
void Scheduler::_run_uarts()
|
|
{
|
|
// process any pending serial bytes
|
|
UARTDriver::from(hal.uartA)->_timer_tick();
|
|
UARTDriver::from(hal.uartB)->_timer_tick();
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
|
|
//SPI UART not use SPI
|
|
if (RPIOUARTDriver::from(hal.uartC)->isExternal()) {
|
|
RPIOUARTDriver::from(hal.uartC)->_timer_tick();
|
|
}
|
|
#else
|
|
UARTDriver::from(hal.uartC)->_timer_tick();
|
|
#endif
|
|
UARTDriver::from(hal.uartE)->_timer_tick();
|
|
}
|
|
|
|
void Scheduler::_uart_task()
|
|
{
|
|
while (true) {
|
|
microsleep(APM_LINUX_UART_PERIOD);
|
|
#if !HAL_LINUX_UARTS_ON_TIMER_THREAD
|
|
_run_uarts();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void Scheduler::_tonealarm_task()
|
|
{
|
|
while (true) {
|
|
microsleep(APM_LINUX_TONEALARM_PERIOD);
|
|
|
|
// process tone command
|
|
Util::from(hal.util)->_toneAlarm_timer_tick();
|
|
}
|
|
}
|
|
|
|
void Scheduler::_io_task()
|
|
{
|
|
while (true) {
|
|
microsleep(APM_LINUX_IO_PERIOD);
|
|
|
|
// process any pending storage writes
|
|
Storage::from(hal.storage)->_timer_tick();
|
|
|
|
// run registered IO procepsses
|
|
_run_io();
|
|
}
|
|
}
|
|
|
|
bool Scheduler::in_timerprocess()
|
|
{
|
|
return _in_timer_proc;
|
|
}
|
|
|
|
void Scheduler::begin_atomic()
|
|
{}
|
|
|
|
void Scheduler::end_atomic()
|
|
{}
|
|
|
|
bool Scheduler::system_initializing() {
|
|
return !_initialized;
|
|
}
|
|
|
|
void Scheduler::_wait_all_threads()
|
|
{
|
|
int r = pthread_barrier_wait(&_initialized_barrier);
|
|
if (r == PTHREAD_BARRIER_SERIAL_THREAD) {
|
|
pthread_barrier_destroy(&_initialized_barrier);
|
|
}
|
|
}
|
|
|
|
void Scheduler::system_initialized()
|
|
{
|
|
if (_initialized) {
|
|
AP_HAL::panic("PANIC: scheduler::system_initialized called more than once");
|
|
}
|
|
|
|
_initialized = true;
|
|
|
|
_wait_all_threads();
|
|
}
|
|
|
|
void Scheduler::reboot(bool hold_in_bootloader)
|
|
{
|
|
exit(1);
|
|
}
|
|
|
|
void Scheduler::stop_clock(uint64_t time_usec)
|
|
{
|
|
if (time_usec >= _stopped_clock_usec) {
|
|
_stopped_clock_usec = time_usec;
|
|
_run_io();
|
|
}
|
|
}
|
|
|
|
bool Scheduler::SchedulerThread::_run()
|
|
{
|
|
_sched._wait_all_threads();
|
|
|
|
return Thread::_run();
|
|
}
|