mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
260 lines
7.1 KiB
C++
260 lines
7.1 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
//
|
|
//
|
|
// AP_IMU_INS.cpp - IMU Sensor Library for Ardupilot Mega
|
|
// Code by Michael Smith, Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
|
|
/// @file AP_IMU_INS.cpp
|
|
/// @brief IMU driver on top of an INS driver. Provides calibration for the
|
|
// inertial sensors (gyro and accel)
|
|
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
|
|
#include <avr/eeprom.h>
|
|
|
|
#include "AP_IMU_INS.h"
|
|
|
|
void
|
|
AP_IMU_INS::init( Start_style style,
|
|
void (*delay_cb)(unsigned long t),
|
|
void (*flash_leds_cb)(bool on),
|
|
AP_PeriodicProcess * scheduler )
|
|
{
|
|
_product_id = _ins->init(scheduler);
|
|
// if we are warm-starting, load the calibration data from EEPROM and go
|
|
//
|
|
if (WARM_START == style) {
|
|
_sensor_cal.load();
|
|
} else {
|
|
|
|
// do cold-start calibration for both accel and gyro
|
|
_init_gyro(delay_cb, flash_leds_cb);
|
|
|
|
// save calibration
|
|
_sensor_cal.save();
|
|
}
|
|
}
|
|
|
|
/**************************************************/
|
|
|
|
void
|
|
AP_IMU_INS::init_gyro(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
|
|
{
|
|
_init_gyro(delay_cb, flash_leds_cb);
|
|
_sensor_cal.save();
|
|
}
|
|
|
|
#define FLASH_LEDS(on) do { if (flash_leds_cb != NULL) flash_leds_cb(on); } while (0)
|
|
|
|
void
|
|
AP_IMU_INS::_init_gyro(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
|
|
{
|
|
Vector3f last_average, best_avg;
|
|
float ins_gyro[3];
|
|
float best_diff = 0;
|
|
|
|
// cold start
|
|
delay_cb(100);
|
|
Serial.printf_P(PSTR("Init Gyro"));
|
|
|
|
for(int c = 0; c < 25; c++) {
|
|
// Mostly we are just flashing the LED's here
|
|
// to tell the user to keep the IMU still
|
|
FLASH_LEDS(true);
|
|
delay_cb(20);
|
|
|
|
_ins->update();
|
|
_ins->get_gyros(ins_gyro);
|
|
|
|
FLASH_LEDS(false);
|
|
delay_cb(20);
|
|
}
|
|
|
|
// the strategy is to average 200 points over 1 second, then do it
|
|
// again and see if the 2nd average is within a small margin of
|
|
// the first
|
|
|
|
last_average.zero();
|
|
|
|
// we try to get a good calibration estimate for up to 10 seconds
|
|
// if the gyros are stable, we should get it in 2 seconds
|
|
for (int j = 0; j <= 10; j++) {
|
|
Vector3f gyro_sum, gyro_avg, gyro_diff;
|
|
float diff_norm;
|
|
uint8_t i;
|
|
|
|
Serial.printf_P(PSTR("*"));
|
|
|
|
gyro_sum.zero();
|
|
for (i=0; i<200; i++) {
|
|
_ins->update();
|
|
_ins->get_gyros(ins_gyro);
|
|
gyro_sum += Vector3f(ins_gyro[0], ins_gyro[1], ins_gyro[2]);
|
|
if (i % 40 == 20) {
|
|
FLASH_LEDS(true);
|
|
} else if (i % 40 == 0) {
|
|
FLASH_LEDS(false);
|
|
}
|
|
delay_cb(5);
|
|
}
|
|
gyro_avg = gyro_sum / i;
|
|
|
|
gyro_diff = last_average - gyro_avg;
|
|
diff_norm = gyro_diff.length();
|
|
|
|
if (j == 0) {
|
|
best_diff = diff_norm;
|
|
best_avg = gyro_avg;
|
|
} else if (gyro_diff.length() < ToRad(0.04)) {
|
|
// we want the average to be within 0.1 bit, which is 0.04 degrees/s
|
|
last_average = (gyro_avg * 0.5) + (last_average * 0.5);
|
|
_sensor_cal[0] = last_average.x;
|
|
_sensor_cal[1] = last_average.y;
|
|
_sensor_cal[2] = last_average.z;
|
|
// all done
|
|
return;
|
|
} else if (diff_norm < best_diff) {
|
|
best_diff = diff_norm;
|
|
best_avg = (gyro_avg * 0.5) + (last_average * 0.5);
|
|
}
|
|
last_average = gyro_avg;
|
|
}
|
|
|
|
// we've kept the user waiting long enough - use the best pair we
|
|
// found so far
|
|
Serial.printf_P(PSTR("\ngyro did not converge: diff=%f dps\n"), ToDeg(best_diff));
|
|
|
|
_sensor_cal[0] = best_avg.x;
|
|
_sensor_cal[1] = best_avg.y;
|
|
_sensor_cal[2] = best_avg.z;
|
|
}
|
|
|
|
void
|
|
AP_IMU_INS::save()
|
|
{
|
|
_sensor_cal.save();
|
|
}
|
|
|
|
void
|
|
AP_IMU_INS::init_accel(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
|
|
{
|
|
_init_accel(delay_cb, flash_leds_cb);
|
|
_sensor_cal.save();
|
|
}
|
|
|
|
void
|
|
AP_IMU_INS::_init_accel(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
|
|
{
|
|
int flashcount = 0;
|
|
float adc_in;
|
|
float prev[6] = {0,0,0};
|
|
float total_change;
|
|
float max_offset;
|
|
float ins_accel[3];
|
|
|
|
|
|
// cold start
|
|
delay_cb(500);
|
|
|
|
Serial.printf_P(PSTR("Init Accel"));
|
|
|
|
for (int j=3; j<=5; j++) _sensor_cal[j] = 500; // Just a large value to load prev[j] the first time
|
|
|
|
do {
|
|
_ins->update();
|
|
_ins->get_accels(ins_accel);
|
|
|
|
for (int j = 3; j <= 5; j++) {
|
|
prev[j] = _sensor_cal[j];
|
|
adc_in = ins_accel[j-3];
|
|
_sensor_cal[j] = adc_in;
|
|
}
|
|
|
|
for(int i = 0; i < 50; i++) { // We take some readings...
|
|
|
|
delay_cb(20);
|
|
_ins->update();
|
|
_ins->get_accels(ins_accel);
|
|
|
|
for (int j = 3; j < 6; j++) {
|
|
adc_in = ins_accel[j-3];
|
|
_sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1;
|
|
}
|
|
|
|
if(flashcount == 5) {
|
|
Serial.printf_P(PSTR("*"));
|
|
FLASH_LEDS(true);
|
|
}
|
|
|
|
if(flashcount >= 10) {
|
|
flashcount = 0;
|
|
FLASH_LEDS(false);
|
|
}
|
|
flashcount++;
|
|
}
|
|
|
|
// null gravity from the Z accel
|
|
_sensor_cal[5] += 9.805;
|
|
|
|
total_change = fabs(prev[3] - _sensor_cal[3]) + fabs(prev[4] - _sensor_cal[4]) +fabs(prev[5] - _sensor_cal[5]);
|
|
max_offset = (_sensor_cal[3] > _sensor_cal[4]) ? _sensor_cal[3] : _sensor_cal[4];
|
|
max_offset = (max_offset > _sensor_cal[5]) ? max_offset : _sensor_cal[5];
|
|
|
|
delay_cb(500);
|
|
} while ( total_change > _accel_total_cal_change || max_offset > _accel_max_cal_offset);
|
|
|
|
Serial.printf_P(PSTR(" "));
|
|
}
|
|
|
|
float
|
|
AP_IMU_INS::_calibrated(uint8_t channel, float ins_value)
|
|
{
|
|
return ins_value - _sensor_cal[channel];
|
|
}
|
|
|
|
|
|
bool
|
|
AP_IMU_INS::update(void)
|
|
{
|
|
float gyros[3];
|
|
float accels[3];
|
|
|
|
_ins->update();
|
|
_ins->get_gyros(gyros);
|
|
_ins->get_accels(accels);
|
|
_sample_time = _ins->sample_time();
|
|
|
|
// convert corrected gyro readings to delta acceleration
|
|
//
|
|
_gyro.x = _calibrated(0, gyros[0]);
|
|
_gyro.y = _calibrated(1, gyros[1]);
|
|
_gyro.z = _calibrated(2, gyros[2]);
|
|
|
|
// convert corrected accelerometer readings to acceleration
|
|
//
|
|
_accel.x = _calibrated(3, accels[0]);
|
|
_accel.y = _calibrated(4, accels[1]);
|
|
_accel.z = _calibrated(5, accels[2]);
|
|
|
|
// always updated
|
|
return true;
|
|
}
|
|
|
|
bool AP_IMU_INS::new_data_available(void) {
|
|
return _ins->new_data_available();
|
|
}
|
|
|
|
/// return the maximum gyro drift rate in radians/s/s. This
|
|
/// depends on what gyro chips are being used
|
|
float AP_IMU_INS::get_gyro_drift_rate(void)
|
|
{
|
|
return _ins->get_gyro_drift_rate();
|
|
}
|