mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 17:38:32 -04:00
52c5db8440
We are starting the process of resolving all the warnings in the ardupilot builds of all vehicles and platforms.
556 lines
16 KiB
C++
556 lines
16 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AP_Compass_AK8963.cpp
|
|
* Code by Georgii Staroselskii. Emlid.com
|
|
*
|
|
* Sensor is conected to SPI port
|
|
*
|
|
*/
|
|
|
|
#include <AP_Math.h>
|
|
#include <AP_HAL.h>
|
|
#include "AP_Compass_AK8963.h"
|
|
|
|
|
|
#define READ_FLAG 0x80
|
|
#define MPUREG_I2C_SLV0_ADDR 0x25
|
|
#define MPUREG_I2C_SLV0_REG 0x26
|
|
#define MPUREG_I2C_SLV0_CTRL 0x27
|
|
#define MPUREG_EXT_SENS_DATA_00 0x49
|
|
#define MPUREG_I2C_SLV0_DO 0x63
|
|
|
|
#define MPU9250_SPI_BACKEND 1
|
|
|
|
#define MPUREG_PWR_MGMT_1 0x6B
|
|
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
|
|
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
|
|
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
|
|
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
|
|
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
|
|
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
|
|
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
|
|
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
|
|
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
|
|
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
|
|
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
|
|
|
|
/* bit definitions for MPUREG_USER_CTRL */
|
|
#define MPUREG_USER_CTRL 0x6A
|
|
# define BIT_USER_CTRL_I2C_MST_EN 0x20 /* Enable MPU to act as the I2C Master to external slave sensors */
|
|
# define BIT_USER_CTRL_I2C_IF_DIS 0x10
|
|
|
|
/* bit definitions for MPUREG_MST_CTRL */
|
|
#define MPUREG_I2C_MST_CTRL 0x24
|
|
# define I2C_SLV0_EN 0x80
|
|
# define I2C_MST_CLOCK_400KHZ 0x0D
|
|
|
|
#define AK8963_I2C_ADDR 0x0c
|
|
|
|
#define AK8963_WIA 0x00
|
|
# define AK8963_Device_ID 0x48
|
|
|
|
#define AK8963_INFO 0x01
|
|
|
|
#define AK8963_ST1 0x02
|
|
# define AK8963_DRDY 0x01
|
|
# define AK8963_DOR 0x02
|
|
|
|
#define AK8963_HXL 0x03
|
|
|
|
/* bit definitions for AK8963 CNTL1 */
|
|
#define AK8963_CNTL1 0x0A
|
|
# define AK8963_CONTINUOUS_MODE1 0x2
|
|
# define AK8963_CONTINUOUS_MODE2 0x6
|
|
# define AK8963_SELFTEST_MODE 0x8
|
|
# define AK8963_POWERDOWN_MODE 0x0
|
|
# define AK8963_FUSE_MODE 0xf
|
|
# define AK8963_16BIT_ADC 0x10
|
|
# define AK8963_14BIT_ADC 0x00
|
|
|
|
#define AK8963_CNTL2 0x0B
|
|
# define AK8963_RESET 0x01
|
|
|
|
#define AK8963_ASTC 0x0C
|
|
# define AK8983_SELFTEST_MAGNETIC_FIELD_ON 0x40
|
|
|
|
#define AK8963_ASAX 0x10
|
|
|
|
#define AK8963_DEBUG 0
|
|
#define AK8963_SELFTEST 0
|
|
#if AK8963_DEBUG
|
|
#define error(...) fprintf(stderr, __VA_ARGS__)
|
|
#define debug(...) hal.console->printf(__VA_ARGS__)
|
|
#define ASSERT(x) assert(x)
|
|
#else
|
|
#define error(...)
|
|
#define debug(...)
|
|
#define ASSERT(x)
|
|
#endif
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
AK8963_MPU9250_SPI_Backend::AK8963_MPU9250_SPI_Backend()
|
|
{
|
|
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250);
|
|
|
|
if (_spi == NULL) {
|
|
hal.scheduler->panic(PSTR("Cannot get SPIDevice_MPU9250"));
|
|
}
|
|
|
|
_spi_sem = _spi->get_semaphore();
|
|
}
|
|
|
|
bool AK8963_MPU9250_SPI_Backend::sem_take_blocking()
|
|
{
|
|
return _spi_sem->take(10);
|
|
}
|
|
|
|
bool AK8963_MPU9250_SPI_Backend::sem_give()
|
|
{
|
|
return _spi_sem->give();
|
|
}
|
|
|
|
bool AK8963_MPU9250_SPI_Backend::sem_take_nonblocking()
|
|
{
|
|
/**
|
|
* Take nonblocking from a TimerProcess context &
|
|
* monitor for bad failures
|
|
*/
|
|
static int _sem_failure_count = 0;
|
|
bool got = _spi_sem->take_nonblocking();
|
|
if (!got) {
|
|
if (!hal.scheduler->system_initializing()) {
|
|
_sem_failure_count++;
|
|
if (_sem_failure_count > 100) {
|
|
hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem "
|
|
"100 times in a row, in "
|
|
"AP_Compass_AK8963::_update"));
|
|
}
|
|
}
|
|
return false; /* never reached */
|
|
} else {
|
|
_sem_failure_count = 0;
|
|
}
|
|
return got;
|
|
}
|
|
|
|
void AK8963_MPU9250_SPI_Backend::read(uint8_t address, uint8_t *buf, uint32_t count)
|
|
{
|
|
ASSERT(count < 10);
|
|
uint8_t tx[11];
|
|
uint8_t rx[11];
|
|
|
|
tx[0] = address | READ_FLAG;
|
|
tx[1] = 0;
|
|
_spi->transaction(tx, rx, count + 1);
|
|
|
|
memcpy(buf, rx + 1, count);
|
|
}
|
|
|
|
void AK8963_MPU9250_SPI_Backend::write(uint8_t address, const uint8_t *buf, uint32_t count)
|
|
{
|
|
ASSERT(count < 2);
|
|
uint8_t tx[2];
|
|
|
|
tx[0] = address;
|
|
memcpy(tx+1, buf, count);
|
|
|
|
_spi->transaction(tx, NULL, count + 1);
|
|
}
|
|
|
|
AP_Compass_AK8963_MPU9250::AP_Compass_AK8963_MPU9250()
|
|
{
|
|
product_id = AP_COMPASS_TYPE_AK8963_MPU9250;
|
|
}
|
|
|
|
void AP_Compass_AK8963_MPU9250::_dump_registers()
|
|
{
|
|
#if AK8963_DEBUG
|
|
error(PSTR("MPU9250 registers\n"));
|
|
for (uint8_t reg=0x00; reg<=0x7E; reg++) {
|
|
uint8_t v = _backend->read(reg);
|
|
error(("%02x:%02x "), (unsigned)reg, (unsigned)v);
|
|
if (reg % 16 == 0) {
|
|
error("\n");
|
|
}
|
|
}
|
|
error("\n");
|
|
#endif
|
|
}
|
|
|
|
void AP_Compass_AK8963_MPU9250::_backend_reset()
|
|
{
|
|
_backend->write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
|
|
}
|
|
|
|
bool AP_Compass_AK8963_MPU9250::_backend_init()
|
|
{
|
|
_backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */
|
|
_backend->write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ); /* I2C configuration multi-master IIC 400KHz */
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AP_Compass_AK8963_MPU9250::init()
|
|
{
|
|
#if MPU9250_SPI_BACKEND
|
|
_backend = new AK8963_MPU9250_SPI_Backend();
|
|
if (_backend == NULL) {
|
|
hal.scheduler->panic(PSTR("_backend coudln't be allocated"));
|
|
}
|
|
return AP_Compass_AK8963::init();
|
|
#else
|
|
#error Wrong backend for AK8963 is selected
|
|
/* other backends not implented yet */
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void AP_Compass_AK8963_MPU9250::_register_write(uint8_t address, uint8_t value)
|
|
{
|
|
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR); /* Set the I2C slave addres of AK8963 and set for _register_write. */
|
|
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
|
|
_backend->write(MPUREG_I2C_SLV0_DO, value); /* Register value to continuous measurement in 16-bit */
|
|
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | 0x01); /* Enable I2C and set 1 byte */
|
|
}
|
|
|
|
void AP_Compass_AK8963_MPU9250::_register_read(uint8_t address, uint8_t count, uint8_t *value)
|
|
{
|
|
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */
|
|
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
|
|
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */
|
|
|
|
hal.scheduler->delay(10);
|
|
_backend->read(MPUREG_EXT_SENS_DATA_00, value, count);
|
|
}
|
|
|
|
uint8_t AP_Compass_AK8963_MPU9250::_read_id()
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
bool AP_Compass_AK8963_MPU9250::_read_raw()
|
|
{
|
|
uint8_t rx[14] = {0};
|
|
|
|
const uint8_t count = 9;
|
|
_backend->read(MPUREG_EXT_SENS_DATA_00, rx, count);
|
|
|
|
uint8_t st2 = rx[8]; /* End data read by reading ST2 register */
|
|
|
|
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx]))
|
|
|
|
if(!(st2 & 0x08)) {
|
|
_mag_x = (float) int16_val(rx, 1);
|
|
_mag_y = (float) int16_val(rx, 2);
|
|
_mag_z = (float) int16_val(rx, 3);
|
|
|
|
if (_mag_x == 0 && _mag_y == 0 && _mag_z == 0) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
AP_Compass_AK8963::AP_Compass_AK8963() :
|
|
Compass(),
|
|
_backend(NULL)
|
|
{
|
|
_healthy[0] = true;
|
|
_initialised = false;
|
|
_mag_x_accum =_mag_y_accum = _mag_z_accum = 0;
|
|
_mag_x =_mag_y = _mag_z = 0;
|
|
_accum_count = 0;
|
|
_magnetometer_adc_resolution = AK8963_16BIT_ADC;
|
|
}
|
|
|
|
|
|
/* stub to satisfy Compass API*/
|
|
void AP_Compass_AK8963::accumulate(void)
|
|
{
|
|
}
|
|
|
|
bool AP_Compass_AK8963::_self_test()
|
|
{
|
|
bool success = false;
|
|
|
|
/* see AK8963.pdf p.19 */
|
|
|
|
/* Set power-down mode */
|
|
_register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution);
|
|
|
|
/* Turn the internal magnetic field on */
|
|
_register_write(AK8963_ASTC, AK8983_SELFTEST_MAGNETIC_FIELD_ON);
|
|
|
|
/* Register value to self-test mode in 14-bit */
|
|
_register_write(AK8963_CNTL1, AK8963_SELFTEST_MODE | _magnetometer_adc_resolution);
|
|
|
|
_start_conversion();
|
|
hal.scheduler->delay(20);
|
|
_read_raw();
|
|
|
|
float hx = _mag_x;
|
|
float hy = _mag_y;
|
|
float hz = _mag_z;
|
|
|
|
error("AK8963's SELF-TEST STARTED\n");
|
|
|
|
switch (_magnetometer_adc_resolution) {
|
|
bool hx_is_in_range;
|
|
bool hy_is_in_range;
|
|
bool hz_is_in_range;
|
|
case AK8963_14BIT_ADC:
|
|
hx_is_in_range = (hx >= - 50) && (hx <= 50);
|
|
hy_is_in_range = (hy >= - 50) && (hy <= 50);
|
|
hz_is_in_range = (hz >= - 800) && (hz <= -200);
|
|
if (hx_is_in_range && hy_is_in_range && hz_is_in_range) {
|
|
success = true;
|
|
}
|
|
break;
|
|
case AK8963_16BIT_ADC:
|
|
hx_is_in_range = (hx >= -200) && (hx <= 200);
|
|
hy_is_in_range = (hy >= -200) && (hy <= 200);
|
|
hz_is_in_range = (hz >= -3200) && (hz <= -800);
|
|
if (hx_is_in_range && hy_is_in_range && hz_is_in_range) {
|
|
success = true;
|
|
}
|
|
break;
|
|
default:
|
|
success = false;
|
|
hal.scheduler->panic(PSTR("Wrong AK8963's ADC resolution selected"));
|
|
break;
|
|
}
|
|
|
|
error("AK8963's SELF-TEST ENDED: %f %f %f\n", hx, hy, hz);
|
|
|
|
/* Turn the internal magnetic field off */
|
|
_register_write(AK8963_ASTC, 0x0);
|
|
|
|
/* Register value to continuous measurement in 14-bit */
|
|
_register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution);
|
|
|
|
return success;
|
|
}
|
|
|
|
bool AP_Compass_AK8963::init()
|
|
{
|
|
_healthy[0] = true;
|
|
|
|
_field[0].x = 0.0f;
|
|
_field[0].y = 0.0f;
|
|
_field[0].z = 0.0f;
|
|
|
|
hal.scheduler->suspend_timer_procs();
|
|
if (!_backend->sem_take_blocking()) {
|
|
error("_spi_sem->take failed\n");
|
|
return false;
|
|
}
|
|
|
|
|
|
if (!_backend_init()) {
|
|
_backend->sem_give();
|
|
return false;
|
|
}
|
|
|
|
_register_write(AK8963_CNTL2, AK8963_RESET); /* Reset AK8963 */
|
|
|
|
hal.scheduler->delay(1000);
|
|
|
|
int id_mismatch_count;
|
|
uint8_t deviceid;
|
|
for (id_mismatch_count = 0; id_mismatch_count < 5; id_mismatch_count++) {
|
|
_register_read(AK8963_WIA, 0x01, &deviceid); /* Read AK8963's id */
|
|
|
|
if (deviceid == AK8963_Device_ID) {
|
|
break;
|
|
}
|
|
|
|
error("trying to read AK8963's ID once more...\n");
|
|
_backend_reset();
|
|
hal.scheduler->delay(100);
|
|
_dump_registers();
|
|
}
|
|
|
|
if (id_mismatch_count == 5) {
|
|
_initialised = false;
|
|
hal.console->printf("WRONG AK8963 DEVICE ID: 0x%x\n", (unsigned)deviceid);
|
|
hal.scheduler->panic(PSTR("AK8963: bad DEVICE ID"));
|
|
}
|
|
|
|
_calibrate();
|
|
|
|
_initialised = true;
|
|
|
|
#if AK8963_SELFTEST
|
|
if (_self_test()) {
|
|
_initialised = true;
|
|
} else {
|
|
_initialised = false;
|
|
}
|
|
#endif
|
|
|
|
/* Register value to continuous measurement */
|
|
_register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | _magnetometer_adc_resolution);
|
|
|
|
_backend->sem_give();
|
|
|
|
hal.scheduler->resume_timer_procs();
|
|
hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Compass_AK8963::_update));
|
|
|
|
_start_conversion();
|
|
|
|
_initialised = true;
|
|
return _initialised;
|
|
}
|
|
|
|
void AP_Compass_AK8963::_update()
|
|
{
|
|
if (hal.scheduler->micros() - _last_update_timestamp < 10000) {
|
|
return;
|
|
}
|
|
|
|
if (!_backend->sem_take_nonblocking()) {
|
|
return;
|
|
}
|
|
|
|
switch (_state)
|
|
{
|
|
case CONVERSION:
|
|
_start_conversion();
|
|
_state = SAMPLE;
|
|
break;
|
|
case SAMPLE:
|
|
_collect_samples();
|
|
_state = CONVERSION;
|
|
break;
|
|
case ERROR:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
_last_update_timestamp = hal.scheduler->micros();
|
|
_backend->sem_give();
|
|
}
|
|
|
|
bool AP_Compass_AK8963::_calibrate()
|
|
{
|
|
error("CALIBRATTION START\n");
|
|
_register_write(AK8963_CNTL1, AK8963_FUSE_MODE | _magnetometer_adc_resolution); /* Enable FUSE-mode in order to be able to read calibreation data */
|
|
|
|
hal.scheduler->delay(10);
|
|
|
|
uint8_t response[3];
|
|
_register_read(AK8963_ASAX, 0x03, response);
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
float data = response[i];
|
|
magnetometer_ASA[i] = ((data-128)/256+1);
|
|
error("%d: %lf\n", i, magnetometer_ASA[i]);
|
|
}
|
|
|
|
error("CALIBRATTION END\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AP_Compass_AK8963::read()
|
|
{
|
|
if (!_initialised) {
|
|
return false;
|
|
}
|
|
|
|
if (_accum_count == 0) {
|
|
/* We're not ready to publish*/
|
|
return true;
|
|
}
|
|
|
|
/* Update */
|
|
_field[0].x = _mag_x_accum * magnetometer_ASA[0] / _accum_count;
|
|
_field[0].y = _mag_y_accum * magnetometer_ASA[1] / _accum_count;
|
|
_field[0].z = _mag_z_accum * magnetometer_ASA[2] / _accum_count;
|
|
|
|
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0;
|
|
_accum_count = 0;
|
|
|
|
// apply default board orientation for this compass type. This is
|
|
// a noop on most boards
|
|
_field[0].rotate(MAG_BOARD_ORIENTATION);
|
|
|
|
// add user selectable orientation
|
|
_field[0].rotate((enum Rotation)_orientation[0].get());
|
|
|
|
if (!_external[0]) {
|
|
// and add in AHRS_ORIENTATION setting if not an external compass
|
|
_field[0].rotate(_board_orientation);
|
|
}
|
|
|
|
apply_corrections(_field[0],0);
|
|
|
|
#if 0
|
|
float x = _field[0].x;
|
|
float y = _field[0].y;
|
|
float z = _field[0].z;
|
|
|
|
error("%f %f %f\n", x, y, z);
|
|
#endif
|
|
|
|
last_update = hal.scheduler->micros(); // record time of update
|
|
|
|
return true;
|
|
}
|
|
|
|
void AP_Compass_AK8963::_start_conversion()
|
|
{
|
|
static const uint8_t address = AK8963_INFO;
|
|
/* Read registers from INFO through ST2 */
|
|
static const uint8_t count = 0x09;
|
|
|
|
_backend_init();
|
|
_backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */
|
|
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */
|
|
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
|
|
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */
|
|
}
|
|
|
|
void AP_Compass_AK8963::_collect_samples()
|
|
{
|
|
if (!_initialised) {
|
|
return;
|
|
}
|
|
|
|
if (!_read_raw()) {
|
|
error("_read_raw failed\n");
|
|
} else {
|
|
_mag_x_accum += _mag_x;
|
|
_mag_y_accum += _mag_y;
|
|
_mag_z_accum += _mag_z;
|
|
_accum_count++;
|
|
if (_accum_count == 10) {
|
|
_mag_x_accum /= 2;
|
|
_mag_y_accum /= 2;
|
|
_mag_z_accum /= 2;
|
|
_accum_count = 5;
|
|
}
|
|
}
|
|
}
|