mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
10e9182c21
with the new thread_create() interface we need to handle delays a bit differently
239 lines
5.5 KiB
C++
239 lines
5.5 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_HAL_SITL.h"
|
|
#include "Scheduler.h"
|
|
#include "UARTDriver.h"
|
|
#include <sys/time.h>
|
|
#include <fenv.h>
|
|
#include <pthread.h>
|
|
|
|
using namespace HALSITL;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
AP_HAL::Proc Scheduler::_failsafe = nullptr;
|
|
|
|
AP_HAL::MemberProc Scheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr};
|
|
uint8_t Scheduler::_num_timer_procs = 0;
|
|
bool Scheduler::_in_timer_proc = false;
|
|
|
|
AP_HAL::MemberProc Scheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr};
|
|
uint8_t Scheduler::_num_io_procs = 0;
|
|
bool Scheduler::_in_io_proc = false;
|
|
bool Scheduler::_should_reboot = false;
|
|
|
|
Scheduler::Scheduler(SITL_State *sitlState) :
|
|
_sitlState(sitlState),
|
|
_stopped_clock_usec(0)
|
|
{
|
|
}
|
|
|
|
void Scheduler::init()
|
|
{
|
|
_main_ctx = pthread_self();
|
|
}
|
|
|
|
bool Scheduler::in_main_thread() const
|
|
{
|
|
if (!_in_timer_proc && !_in_io_proc && pthread_self() == _main_ctx) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Scheduler::delay_microseconds(uint16_t usec)
|
|
{
|
|
uint64_t start = AP_HAL::micros64();
|
|
do {
|
|
uint64_t dtime = AP_HAL::micros64() - start;
|
|
if (dtime >= usec) {
|
|
break;
|
|
}
|
|
_sitlState->wait_clock(start + usec);
|
|
} while (true);
|
|
}
|
|
|
|
void Scheduler::delay(uint16_t ms)
|
|
{
|
|
uint32_t start = AP_HAL::millis();
|
|
uint32_t now = start;
|
|
do {
|
|
delay_microseconds(1000);
|
|
if (_min_delay_cb_ms <= (ms - (now - start))) {
|
|
if (in_main_thread()) {
|
|
call_delay_cb();
|
|
}
|
|
}
|
|
now = AP_HAL::millis();
|
|
} while (now - start < ms);
|
|
}
|
|
|
|
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
_num_timer_procs++;
|
|
}
|
|
}
|
|
|
|
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_io_proc[_num_io_procs] = proc;
|
|
_num_io_procs++;
|
|
}
|
|
}
|
|
|
|
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
|
|
{
|
|
_failsafe = failsafe;
|
|
}
|
|
|
|
void Scheduler::system_initialized() {
|
|
if (_initialized) {
|
|
AP_HAL::panic(
|
|
"PANIC: scheduler system initialized called more than once");
|
|
}
|
|
int exceptions = FE_OVERFLOW | FE_DIVBYZERO;
|
|
#ifndef __i386__
|
|
// i386 with gcc doesn't work with FE_INVALID
|
|
exceptions |= FE_INVALID;
|
|
#endif
|
|
if (_sitlState->_sitl == nullptr || _sitlState->_sitl->float_exception) {
|
|
feenableexcept(exceptions);
|
|
} else {
|
|
feclearexcept(exceptions);
|
|
}
|
|
_initialized = true;
|
|
}
|
|
|
|
void Scheduler::sitl_end_atomic() {
|
|
if (_nested_atomic_ctr == 0) {
|
|
hal.uartA->printf("NESTED ATOMIC ERROR\n");
|
|
} else {
|
|
_nested_atomic_ctr--;
|
|
}
|
|
}
|
|
|
|
void Scheduler::reboot(bool hold_in_bootloader)
|
|
{
|
|
_should_reboot = true;
|
|
}
|
|
|
|
void Scheduler::_run_timer_procs()
|
|
{
|
|
if (_in_timer_proc) {
|
|
// the timer calls took longer than the period of the
|
|
// timer. This is bad, and may indicate a serious
|
|
// driver failure. We can't just call the drivers
|
|
// again, as we could run out of stack. So we only
|
|
// call the _failsafe call. It's job is to detect if
|
|
// the drivers or the main loop are indeed dead and to
|
|
// activate whatever failsafe it thinks may help if
|
|
// need be. We assume the failsafe code can't
|
|
// block. If it does then we will recurse and die when
|
|
// we run out of stack
|
|
if (_failsafe != nullptr) {
|
|
_failsafe();
|
|
}
|
|
return;
|
|
}
|
|
_in_timer_proc = true;
|
|
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i]) {
|
|
_timer_proc[i]();
|
|
}
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != nullptr) {
|
|
_failsafe();
|
|
}
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
void Scheduler::_run_io_procs()
|
|
{
|
|
if (_in_io_proc) {
|
|
return;
|
|
}
|
|
_in_io_proc = true;
|
|
|
|
// now call the IO based drivers
|
|
for (int i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i]) {
|
|
_io_proc[i]();
|
|
}
|
|
}
|
|
|
|
_in_io_proc = false;
|
|
|
|
hal.uartA->_timer_tick();
|
|
hal.uartB->_timer_tick();
|
|
hal.uartC->_timer_tick();
|
|
hal.uartD->_timer_tick();
|
|
hal.uartE->_timer_tick();
|
|
hal.uartF->_timer_tick();
|
|
hal.uartG->_timer_tick();
|
|
}
|
|
|
|
/*
|
|
set simulation timestamp
|
|
*/
|
|
void Scheduler::stop_clock(uint64_t time_usec)
|
|
{
|
|
_stopped_clock_usec = time_usec;
|
|
if (time_usec - _last_io_run > 10000) {
|
|
_last_io_run = time_usec;
|
|
_run_io_procs();
|
|
}
|
|
}
|
|
|
|
/*
|
|
trampoline for thread create
|
|
*/
|
|
void *Scheduler::thread_create_trampoline(void *ctx)
|
|
{
|
|
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx;
|
|
(*t)();
|
|
free(t);
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
/*
|
|
create a new thread
|
|
*/
|
|
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
|
|
{
|
|
// take a copy of the MemberProc, it is freed after thread exits
|
|
AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)malloc(sizeof(proc));
|
|
if (!tproc) {
|
|
return false;
|
|
}
|
|
*tproc = proc;
|
|
pthread_t thread {};
|
|
if (pthread_create(&thread, NULL, thread_create_trampoline, tproc) != 0) {
|
|
free(tproc);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|