ardupilot/libraries/AP_AccelCal/AP_AccelCal.cpp

383 lines
11 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_AccelCal.h"
#include <stdarg.h>
#include <GCS_MAVLink/GCS.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_HAL/AP_HAL.h>
#define AP_ACCELCAL_POSITION_REQUEST_INTERVAL_MS 1000
const extern AP_HAL::HAL& hal;
static bool _start_collect_sample;
static void _snoop(const mavlink_message_t* msg);
uint8_t AP_AccelCal::_num_clients = 0;
AP_AccelCal_Client* AP_AccelCal::_clients[AP_ACCELCAL_MAX_NUM_CLIENTS] {};
void AP_AccelCal::update()
{
if (!get_calibrator(0)) {
// no calibrators
return;
}
if (_started) {
update_status();
AccelCalibrator *cal;
uint8_t num_active_calibrators = 0;
for(uint8_t i=0; (cal = get_calibrator(i)); i++) {
num_active_calibrators++;
}
if (num_active_calibrators != _num_active_calibrators) {
fail();
return;
}
if(_start_collect_sample) {
collect_sample();
}
switch(_status) {
case ACCEL_CAL_NOT_STARTED:
fail();
return;
case ACCEL_CAL_WAITING_FOR_ORIENTATION: {
// if we're waiting for orientation, first ensure that all calibrators are on the same step
uint8_t step;
if ((cal = get_calibrator(0)) == nullptr) {
fail();
return;
}
step = cal->get_num_samples_collected()+1;
for(uint8_t i=1 ; (cal = get_calibrator(i)) ; i++) {
if (step != cal->get_num_samples_collected()+1) {
fail();
return;
}
}
// if we're on a new step, print a message describing the step
if (step != _step) {
_step = step;
if(_use_gcs_snoop) {
const char *msg;
switch (step) {
case ACCELCAL_VEHICLE_POS_LEVEL:
msg = "level";
break;
case ACCELCAL_VEHICLE_POS_LEFT:
msg = "on its LEFT side";
break;
case ACCELCAL_VEHICLE_POS_RIGHT:
msg = "on its RIGHT side";
break;
case ACCELCAL_VEHICLE_POS_NOSEDOWN:
msg = "nose DOWN";
break;
case ACCELCAL_VEHICLE_POS_NOSEUP:
msg = "nose UP";
break;
case ACCELCAL_VEHICLE_POS_BACK:
msg = "on its BACK";
break;
default:
fail();
return;
}
_printf("Place vehicle %s and press any key.", msg);
// setup snooping of packets so we can see the COMMAND_ACK
_gcs->set_snoop(_snoop);
}
}
uint32_t now = AP_HAL::millis();
if (now - _last_position_request_ms > AP_ACCELCAL_POSITION_REQUEST_INTERVAL_MS) {
_last_position_request_ms = now;
_gcs->send_accelcal_vehicle_position(step);
}
break;
}
case ACCEL_CAL_COLLECTING_SAMPLE:
// check for timeout
for(uint8_t i=0; (cal = get_calibrator(i)); i++) {
cal->check_for_timeout();
}
update_status();
if (_status == ACCEL_CAL_FAILED) {
fail();
}
return;
case ACCEL_CAL_SUCCESS:
// save
if (_saving) {
bool done = true;
for(uint8_t i=0; i<_num_clients; i++) {
if (client_active(i) && _clients[i]->_acal_get_saving()) {
done = false;
break;
}
}
if (done) {
success();
}
return;
} else {
for(uint8_t i=0; i<_num_clients; i++) {
if(client_active(i) && _clients[i]->_acal_get_fail()) {
fail();
return;
}
}
for(uint8_t i=0; i<_num_clients; i++) {
if(client_active(i)) {
_clients[i]->_acal_save_calibrations();
}
}
_saving = true;
}
return;
default:
case ACCEL_CAL_FAILED:
fail();
return;
}
}
}
void AP_AccelCal::start(GCS_MAVLINK *gcs)
{
if (gcs == nullptr || _started) {
return;
}
_start_collect_sample = false;
_num_active_calibrators = 0;
AccelCalibrator *cal;
for(uint8_t i=0; (cal = get_calibrator(i)); i++) {
cal->clear();
cal->start(ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID, 6, 0.5f);
_num_active_calibrators++;
}
_started = true;
_saving = false;
_gcs = gcs;
_use_gcs_snoop = true;
_last_position_request_ms = 0;
_step = 0;
update_status();
}
void AP_AccelCal::success()
{
_printf("Calibration successful");
for(uint8_t i=0 ; i < _num_clients ; i++) {
_clients[i]->_acal_event_success();
}
clear();
}
void AP_AccelCal::cancel()
{
_printf("Calibration cancelled");
for(uint8_t i=0 ; i < _num_clients ; i++) {
_clients[i]->_acal_event_cancellation();
}
clear();
}
void AP_AccelCal::fail()
{
_printf("Calibration FAILED");
for(uint8_t i=0 ; i < _num_clients ; i++) {
_clients[i]->_acal_event_failure();
}
clear();
}
void AP_AccelCal::clear()
{
if (!_started) {
return;
}
AccelCalibrator *cal;
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
cal->clear();
}
_gcs = nullptr;
_step = 0;
_started = false;
_saving = false;
update_status();
}
void AP_AccelCal::collect_sample()
{
if (_status != ACCEL_CAL_WAITING_FOR_ORIENTATION) {
return;
}
for(uint8_t i=0; i<_num_clients; i++) {
if (client_active(i) && !_clients[i]->_acal_get_ready_to_sample()) {
_printf("Not ready to sample");
return;
}
}
AccelCalibrator *cal;
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
cal->collect_sample();
}
// setup snooping of packets so we can see the COMMAND_ACK
_gcs->set_snoop(nullptr);
_start_collect_sample = false;
update_status();
}
void AP_AccelCal::register_client(AP_AccelCal_Client* client) {
if (client == nullptr || _num_clients >= AP_ACCELCAL_MAX_NUM_CLIENTS) {
return;
}
for(uint8_t i=0; i<_num_clients; i++) {
if(_clients[i] == client) {
return;
}
}
_clients[_num_clients] = client;
_num_clients++;
}
AccelCalibrator* AP_AccelCal::get_calibrator(uint8_t index) {
AccelCalibrator* ret;
for(uint8_t i=0; i<_num_clients; i++) {
for(uint8_t j=0 ; (ret = _clients[i]->_acal_get_calibrator(j)) ; j++) {
if (index == 0) {
return ret;
}
index--;
}
}
return nullptr;
}
void AP_AccelCal::update_status() {
AccelCalibrator *cal;
if (!get_calibrator(0)) {
// no calibrators
_status = ACCEL_CAL_NOT_STARTED;
return;
}
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
if (cal->get_status() == ACCEL_CAL_FAILED) {
_status = ACCEL_CAL_FAILED; //fail if even one of the calibration has
return;
}
}
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
if (cal->get_status() == ACCEL_CAL_COLLECTING_SAMPLE) {
_status = ACCEL_CAL_COLLECTING_SAMPLE; // move to Collecting sample state if all the callibrators have
return;
}
}
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
if (cal->get_status() == ACCEL_CAL_WAITING_FOR_ORIENTATION) {
_status = ACCEL_CAL_WAITING_FOR_ORIENTATION; // move to waiting for user ack for orientation confirmation
return;
}
}
for(uint8_t i=0 ; (cal = get_calibrator(i)) ; i++) {
if (cal->get_status() == ACCEL_CAL_NOT_STARTED) {
_status = ACCEL_CAL_NOT_STARTED; // we haven't started if all the calibrators haven't
return;
}
}
_status = ACCEL_CAL_SUCCESS; // we have succeeded calibration if all the calibrators have
return;
}
bool AP_AccelCal::client_active(uint8_t client_num)
{
return (bool)_clients[client_num]->_acal_get_calibrator(0);
}
static void _snoop(const mavlink_message_t* msg)
{
if (msg->msgid == MAVLINK_MSG_ID_COMMAND_ACK) {
_start_collect_sample = true;
}
}
bool AP_AccelCal::gcs_vehicle_position(float position)
{
_use_gcs_snoop = false;
if (_status == ACCEL_CAL_WAITING_FOR_ORIENTATION && is_equal((float) _step, position)) {
_start_collect_sample = true;
return true;
}
return false;
}
void AP_AccelCal::_printf(const char* fmt, ...)
{
if (!_gcs) {
return;
}
char msg[50];
va_list ap;
va_start(ap, fmt);
hal.util->vsnprintf(msg, sizeof(msg), fmt, ap);
va_end(ap);
if (msg[strlen(msg)-1] == '\n') {
// STATUSTEXT messages should not add linefeed
msg[strlen(msg)-1] = 0;
}
AP_HAL::UARTDriver *uart = _gcs->get_uart();
/*
* to ensure these messages get to the user we need to wait for the
* port send buffer to have enough room
*/
while (uart->txspace() < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_STATUSTEXT_LEN) {
hal.scheduler->delay(1);
}
#if !APM_BUILD_TYPE(APM_BUILD_Replay)
_gcs->send_text(MAV_SEVERITY_CRITICAL, msg);
#endif
}