ardupilot/libraries/AP_HAL_ChibiOS/examples/DShot/DShot.cpp
2018-04-07 09:10:29 +10:00

1124 lines
30 KiB
C++

/*
example implementing MSP and BLHeli passthrough protocol in ArduPilot
With thanks to betaflight for a great reference implementation
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include "ch.h"
#include "hal.h"
#include "hwdef.h"
#include <AP_HAL/utility/RingBuffer.h>
#include <AP_Math/crc.h>
#include "msp_protocol.h"
#include "blheli_4way_protocol.h"
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
void setup();
void loop();
//#pragma GCC optimize("Og")
/*
implementation of MSP protocol based on betaflight
*/
enum mspState {
MSP_IDLE=0,
MSP_HEADER_START,
MSP_HEADER_M,
MSP_HEADER_ARROW,
MSP_HEADER_SIZE,
MSP_HEADER_CMD,
MSP_COMMAND_RECEIVED
};
enum mspPacketType {
MSP_PACKET_COMMAND,
MSP_PACKET_REPLY
};
enum escProtocol {
PROTOCOL_SIMONK = 0,
PROTOCOL_BLHELI = 1,
PROTOCOL_KISS = 2,
PROTOCOL_KISSALL = 3,
PROTOCOL_CASTLE = 4,
PROTOCOL_MAX = 5,
PROTOCOL_NONE = 0xfe,
PROTOCOL_4WAY = 0xff
};
enum motorPwmProtocol {
PWM_TYPE_STANDARD = 0,
PWM_TYPE_ONESHOT125,
PWM_TYPE_ONESHOT42,
PWM_TYPE_MULTISHOT,
PWM_TYPE_BRUSHED,
PWM_TYPE_DSHOT150,
PWM_TYPE_DSHOT300,
PWM_TYPE_DSHOT600,
PWM_TYPE_DSHOT1200,
PWM_TYPE_PROSHOT1000,
};
enum MSPFeatures {
FEATURE_RX_PPM = 1 << 0,
FEATURE_INFLIGHT_ACC_CAL = 1 << 2,
FEATURE_RX_SERIAL = 1 << 3,
FEATURE_MOTOR_STOP = 1 << 4,
FEATURE_SERVO_TILT = 1 << 5,
FEATURE_SOFTSERIAL = 1 << 6,
FEATURE_GPS = 1 << 7,
FEATURE_RANGEFINDER = 1 << 9,
FEATURE_TELEMETRY = 1 << 10,
FEATURE_3D = 1 << 12,
FEATURE_RX_PARALLEL_PWM = 1 << 13,
FEATURE_RX_MSP = 1 << 14,
FEATURE_RSSI_ADC = 1 << 15,
FEATURE_LED_STRIP = 1 << 16,
FEATURE_DASHBOARD = 1 << 17,
FEATURE_OSD = 1 << 18,
FEATURE_CHANNEL_FORWARDING = 1 << 20,
FEATURE_TRANSPONDER = 1 << 21,
FEATURE_AIRMODE = 1 << 22,
FEATURE_RX_SPI = 1 << 25,
FEATURE_SOFTSPI = 1 << 26,
FEATURE_ESC_SENSOR = 1 << 27,
FEATURE_ANTI_GRAVITY = 1 << 28,
FEATURE_DYNAMIC_FILTER = 1 << 29,
};
/*
state of MSP command processing
*/
static struct {
enum mspState state;
enum mspPacketType packetType;
uint8_t offset;
uint8_t dataSize;
uint8_t checksum;
uint8_t buf[192];
uint8_t cmdMSP;
enum escProtocol escMode;
uint8_t portIndex;
} msp;
#define MSP_PORT_INBUF_SIZE sizeof(msp.buf)
enum blheliState {
BLHELI_IDLE=0,
BLHELI_HEADER_START,
BLHELI_HEADER_CMD,
BLHELI_HEADER_ADDR_LOW,
BLHELI_HEADER_ADDR_HIGH,
BLHELI_HEADER_LEN,
BLHELI_CRC1,
BLHELI_CRC2,
BLHELI_COMMAND_RECEIVED
};
/*
state of blheli 4way protocol handling
*/
static struct {
enum blheliState state;
uint8_t command;
uint16_t address;
uint16_t param_len;
uint16_t offset;
uint8_t buf[256+3+8];
uint8_t crc1;
uint16_t crc;
uint8_t interface_mode;
uint8_t deviceInfo[4];
uint8_t chan;
uint8_t ack;
} blheli;
// start of 12 byte CPU ID
#ifndef UDID_START
#define UDID_START 0x1FFF7A10
#endif
// fixed number of channels for now
#define NUM_ESC_CHANNELS 4
/*
process one byte of serial input for MSP protocol
*/
static bool msp_process_byte(uint8_t c)
{
if (msp.state == MSP_IDLE) {
msp.escMode = PROTOCOL_NONE;
if (c == '$') {
msp.state = MSP_HEADER_START;
} else {
return false;
}
} else if (msp.state == MSP_HEADER_START) {
msp.state = (c == 'M') ? MSP_HEADER_M : MSP_IDLE;
} else if (msp.state == MSP_HEADER_M) {
msp.state = MSP_IDLE;
switch (c) {
case '<': // COMMAND
msp.packetType = MSP_PACKET_COMMAND;
msp.state = MSP_HEADER_ARROW;
break;
case '>': // REPLY
msp.packetType = MSP_PACKET_REPLY;
msp.state = MSP_HEADER_ARROW;
break;
default:
break;
}
} else if (msp.state == MSP_HEADER_ARROW) {
if (c > MSP_PORT_INBUF_SIZE) {
msp.state = MSP_IDLE;
} else {
msp.dataSize = c;
msp.offset = 0;
msp.checksum = 0;
msp.checksum ^= c;
msp.state = MSP_HEADER_SIZE;
}
} else if (msp.state == MSP_HEADER_SIZE) {
msp.cmdMSP = c;
msp.checksum ^= c;
msp.state = MSP_HEADER_CMD;
} else if (msp.state == MSP_HEADER_CMD && msp.offset < msp.dataSize) {
msp.checksum ^= c;
msp.buf[msp.offset++] = c;
} else if (msp.state == MSP_HEADER_CMD && msp.offset >= msp.dataSize) {
if (msp.checksum == c) {
msp.state = MSP_COMMAND_RECEIVED;
} else {
msp.state = MSP_IDLE;
}
}
return true;
}
/*
update CRC state for blheli protocol
*/
static void blheli_crc_update(uint8_t c)
{
blheli.crc = crc_xmodem_update(blheli.crc, c);
}
/*
process one byte of serial input for blheli 4way protocol
*/
static bool blheli_4way_process_byte(uint8_t c)
{
if (blheli.state == BLHELI_IDLE) {
if (c == cmd_Local_Escape) {
blheli.state = BLHELI_HEADER_START;
blheli.crc = 0;
blheli_crc_update(c);
} else {
return false;
}
} else if (blheli.state == BLHELI_HEADER_START) {
blheli.command = c;
blheli_crc_update(c);
blheli.state = BLHELI_HEADER_CMD;
} else if (blheli.state == BLHELI_HEADER_CMD) {
blheli.address = c<<8;
blheli.state = BLHELI_HEADER_ADDR_HIGH;
blheli_crc_update(c);
} else if (blheli.state == BLHELI_HEADER_ADDR_HIGH) {
blheli.address |= c;
blheli.state = BLHELI_HEADER_ADDR_LOW;
blheli_crc_update(c);
} else if (blheli.state == BLHELI_HEADER_ADDR_LOW) {
blheli.state = BLHELI_HEADER_LEN;
blheli.param_len = c?c:256;
blheli.offset = 0;
blheli_crc_update(c);
} else if (blheli.state == BLHELI_HEADER_LEN) {
blheli.buf[blheli.offset++] = c;
blheli_crc_update(c);
if (blheli.offset == blheli.param_len) {
blheli.state = BLHELI_CRC1;
}
} else if (blheli.state == BLHELI_CRC1) {
blheli.crc1 = c;
blheli.state = BLHELI_CRC2;
} else if (blheli.state == BLHELI_CRC2) {
uint16_t crc = blheli.crc1<<8 | c;
if (crc == blheli.crc) {
blheli.state = BLHELI_COMMAND_RECEIVED;
} else {
blheli.state = BLHELI_IDLE;
}
}
return true;
}
/*
send a MSP protocol reply
*/
static void msp_send_reply(uint8_t cmd, const uint8_t *buf, uint8_t len)
{
uint8_t *b = &msp.buf[0];
*b++ = '$';
*b++ = 'M';
*b++ = '>';
*b++ = len;
*b++ = cmd;
memcpy(b, buf, len);
b += len;
uint8_t c = 0;
for (uint8_t i=0; i<len+2; i++) {
c ^= msp.buf[i+3];
}
*b++ = c;
hal.uartC->write(&msp.buf[0], len+6);
}
static void putU16(uint8_t *b, uint16_t v)
{
b[0] = v;
b[1] = v >> 8;
}
static uint16_t getU16(const uint8_t *b)
{
return b[0] | (b[1]<<8);
}
static void putU32(uint8_t *b, uint32_t v)
{
b[0] = v;
b[1] = v >> 8;
b[2] = v >> 16;
b[3] = v >> 24;
}
static void putU16_BE(uint8_t *b, uint16_t v)
{
b[0] = v >> 8;
b[1] = v;
}
/*
process a MSP command from GCS
*/
static void msp_process_command(void)
{
hal.console->printf("MSP cmd %u len=%u\n", msp.cmdMSP, msp.dataSize);
switch (msp.cmdMSP) {
case MSP_API_VERSION: {
uint8_t buf[3] = { MSP_PROTOCOL_VERSION, API_VERSION_MAJOR, API_VERSION_MINOR };
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_FC_VARIANT:
msp_send_reply(msp.cmdMSP, (const uint8_t *)ARDUPILOT_IDENTIFIER, FLIGHT_CONTROLLER_IDENTIFIER_LENGTH);
break;
case MSP_FC_VERSION: {
uint8_t version[3] = { 3, 3, 0 };
msp_send_reply(msp.cmdMSP, version, sizeof(version));
break;
}
case MSP_BOARD_INFO: {
// send a generic 'ArduPilot ChibiOS' board type
uint8_t buf[7] = { 'A', 'R', 'C', 'H', 0, 0, 0 };
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_BUILD_INFO: {
// build date, build time, git version
uint8_t buf[26] {
0x4d, 0x61, 0x72, 0x20, 0x31, 0x36, 0x20, 0x32, 0x30,
0x31, 0x38, 0x30, 0x38, 0x3A, 0x34, 0x32, 0x3a, 0x32, 0x39,
0x62, 0x30, 0x66, 0x66, 0x39, 0x32, 0x38};
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_REBOOT:
hal.console->printf("MSP: rebooting\n");
hal.scheduler->reboot(false);
break;
case MSP_UID:
// MCU identifer
msp_send_reply(msp.cmdMSP, (const uint8_t *)UDID_START, 12);
break;
case MSP_ADVANCED_CONFIG: {
uint8_t buf[10];
buf[0] = 1; // gyro sync denom
buf[1] = 4; // pid process denom
buf[2] = 0; // use unsynced pwm
buf[3] = (uint8_t)PWM_TYPE_DSHOT150; // motor PWM protocol
putU16(&buf[4], 480); // motor PWM Rate
putU16(&buf[6], 450); // idle offset value
buf[8] = 0; // use 32kHz
buf[9] = 0; // motor PWM inversion
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_FEATURE_CONFIG: {
uint8_t buf[4];
putU32(buf, 0); // from MSPFeatures enum
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_STATUS: {
uint8_t buf[21];
putU16(&buf[0], 2500); // loop time usec
putU16(&buf[2], 0); // i2c error count
putU16(&buf[4], 0x27); // available sensors
putU32(&buf[6], 0); // flight modes
buf[10] = 0; // pid profile index
putU16(&buf[11], 5); // system load percent
putU16(&buf[13], 0); // gyro cycle time
buf[15] = 0; // flight mode flags length
buf[16] = 18; // arming disable flags count
putU32(&buf[17], 0); // arming disable flags
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_MOTOR_3D_CONFIG: {
uint8_t buf[6];
putU16(&buf[0], 1406); // 3D deadband low
putU16(&buf[2], 1514); // 3D deadband high
putU16(&buf[4], 1460); // 3D neutral
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_MOTOR_CONFIG: {
uint8_t buf[6];
putU16(&buf[0], 1070); // min throttle
putU16(&buf[2], 2000); // max throttle
putU16(&buf[4], 1000); // min command
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_MOTOR: {
// get the output going to each motor
uint8_t buf[16];
for (uint8_t i = 0; i < 8; i++) {
putU16(&buf[2*i], hal.rcout->read(i));
}
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_SET_MOTOR: {
// set the output to each motor
uint8_t nmotors = msp.dataSize / 2;
hal.console->printf("MSP_SET_MOTOR %u\n", nmotors);
hal.rcout->cork();
for (uint8_t i = 0; i < nmotors; i++) {
uint16_t v = getU16(&msp.buf[i*2]);
hal.console->printf("MSP_SET_MOTOR %u %u\n", i, v);
hal.rcout->write(i, v);
}
hal.rcout->push();
break;
}
case MSP_SET_4WAY_IF: {
if (msp.dataSize == 0) {
msp.escMode = PROTOCOL_4WAY;
} else if (msp.dataSize == 2) {
msp.escMode = (enum escProtocol)msp.buf[0];
msp.portIndex = msp.buf[1];
}
hal.console->printf("escMode=%u portIndex=%u\n", msp.escMode, msp.portIndex);
uint8_t n = NUM_ESC_CHANNELS;
switch (msp.escMode) {
case PROTOCOL_4WAY:
break;
default:
n = 0;
hal.rcout->serial_end();
break;
}
msp_send_reply(msp.cmdMSP, &n, 1);
break;
}
default:
hal.console->printf("Unknown MSP command %u\n", msp.cmdMSP);
break;
}
}
/*
send a blheli 4way protocol reply
*/
static void blheli_send_reply(const uint8_t *buf, uint16_t len)
{
uint8_t *b = &blheli.buf[0];
*b++ = cmd_Remote_Escape;
*b++ = blheli.command;
putU16_BE(b, blheli.address); b += 2;
*b++ = len==256?0:len;
memcpy(b, buf, len);
b += len;
*b++ = blheli.ack;
putU16_BE(b, crc_xmodem(&blheli.buf[0], len+6));
hal.uartC->write(&blheli.buf[0], len+8);
hal.console->printf("OutB(%u) 0x%02x ack=0x%02x\n", len+8, (unsigned)blheli.command, blheli.ack);
}
/*
CRC used when talking to ESCs
*/
static uint16_t BL_CRC(const uint8_t *buf, uint16_t len)
{
uint16_t crc = 0;
while (len--) {
uint8_t xb = *buf++;
for (uint8_t i = 0; i < 8; i++) {
if (((xb & 0x01) ^ (crc & 0x0001)) !=0 ) {
crc = crc >> 1;
crc = crc ^ 0xA001;
} else {
crc = crc >> 1;
}
xb = xb >> 1;
}
}
return crc;
}
static bool isMcuConnected(void)
{
return blheli.deviceInfo[0] > 0;
}
static void setDisconnected(void)
{
blheli.deviceInfo[0] = 0;
blheli.deviceInfo[1] = 0;
}
/*
send a set of bytes to an RC output channel
*/
static bool BL_SendBuf(const uint8_t *buf, uint16_t len)
{
bool send_crc = isMcuConnected();
if (!hal.rcout->serial_setup_output(blheli.chan, 19200)) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
memcpy(blheli.buf, buf, len);
uint16_t crc = BL_CRC(buf, len);
blheli.buf[len] = crc;
blheli.buf[len+1] = crc>>8;
if (!hal.rcout->serial_write_bytes(blheli.buf, len+(send_crc?2:0))) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
return true;
}
static bool BL_ReadBuf(uint8_t *buf, uint16_t len)
{
bool check_crc = isMcuConnected() && len > 0;
uint16_t req_bytes = len+(check_crc?3:1);
uint16_t n = hal.rcout->serial_read_bytes(blheli.buf, req_bytes);
hal.console->printf("BL_ReadBuf %u -> %u\n", len, n);
if (req_bytes != n) {
hal.console->printf("short read\n");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
if (check_crc) {
uint16_t crc = BL_CRC(blheli.buf, len);
if ((crc & 0xff) != blheli.buf[len] ||
(crc >> 8) != blheli.buf[len+1]) {
hal.console->printf("bad CRC\n");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
if (blheli.buf[len+2] != brSUCCESS) {
hal.console->printf("bad ACK\n");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
} else {
if (blheli.buf[len] != brSUCCESS) {
hal.console->printf("bad ACK1\n");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
}
if (len > 0) {
memcpy(buf, blheli.buf, len);
}
return true;
}
static uint8_t BL_GetACK(uint16_t timeout_ms=2)
{
uint8_t ack;
uint32_t start_ms = AP_HAL::millis();
while (AP_HAL::millis() - start_ms < timeout_ms) {
if (hal.rcout->serial_read_bytes(&ack, 1) == 1) {
return ack;
}
}
// return brNONE, meaning no ACK received in the timeout
return brNONE;
}
static bool BL_SendCMDSetAddress()
{
// skip if adr == 0xFFFF
if (blheli.address == 0xFFFF) {
return true;
}
hal.console->printf("BL_SendCMDSetAddress 0x%04x\n", blheli.address);
uint8_t sCMD[] = {CMD_SET_ADDRESS, 0, uint8_t(blheli.address>>8), uint8_t(blheli.address)};
BL_SendBuf(sCMD, 4);
return BL_GetACK() == brSUCCESS;
}
static bool BL_ReadA(uint8_t cmd, uint8_t *buf, uint16_t n)
{
if (BL_SendCMDSetAddress()) {
uint8_t sCMD[] = {cmd, uint8_t(n==256?0:n)};
if (!BL_SendBuf(sCMD, 2)) {
return false;
}
return BL_ReadBuf(buf, n);
}
return false;
}
/*
connect to a blheli ESC
*/
static bool BL_ConnectEx(void)
{
hal.console->printf("BL_ConnectEx start\n");
setDisconnected();
const uint8_t BootInit[] = {0,0,0,0,0,0,0,0,0,0,0,0,0x0D,'B','L','H','e','l','i',0xF4,0x7D};
BL_SendBuf(BootInit, 21);
uint8_t BootInfo[8];
if (!BL_ReadBuf(BootInfo, 8)) {
return false;
}
// reply must start with 471
if (strncmp((const char *)BootInfo, "471", 3) != 0) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
// extract device information
blheli.deviceInfo[2] = BootInfo[3];
blheli.deviceInfo[1] = BootInfo[4];
blheli.deviceInfo[0] = BootInfo[5];
blheli.interface_mode = 0;
uint16_t *devword = (uint16_t *)blheli.deviceInfo;
switch (*devword) {
case 0x9307:
case 0x930A:
case 0x930F:
case 0x940B:
blheli.interface_mode = imATM_BLB;
hal.console->printf("Interface type imATM_BLB\n");
break;
case 0xF310:
case 0xF330:
case 0xF410:
case 0xF390:
case 0xF850:
case 0xE8B1:
case 0xE8B2:
blheli.interface_mode = imSIL_BLB;
hal.console->printf("Interface type imSIL_BLB\n");
break;
case 0x1F06:
case 0x3306:
case 0x3406:
case 0x3506:
blheli.interface_mode = imARM_BLB;
hal.console->printf("Interface type imARM_BLB\n");
break;
default:
blheli.ack = ACK_D_GENERAL_ERROR;
hal.console->printf("Unknown interface type 0x%04x\n", *devword);
break;
}
blheli.deviceInfo[3] = blheli.interface_mode;
return true;
}
static bool BL_SendCMDKeepAlive(void)
{
uint8_t sCMD[] = {CMD_KEEP_ALIVE, 0};
if (!BL_SendBuf(sCMD, 2)) {
return false;
}
if (BL_GetACK() != brERRORCOMMAND) {
return false;
}
return true;
}
static bool BL_PageErase(void)
{
if (BL_SendCMDSetAddress()) {
uint8_t sCMD[] = {CMD_ERASE_FLASH, 0x01};
BL_SendBuf(sCMD, 2);
return BL_GetACK(1000) == brSUCCESS;
}
return false;
}
static void BL_SendCMDRunRestartBootloader(void)
{
uint8_t sCMD[] = {RestartBootloader, 0};
blheli.deviceInfo[0] = 1;
BL_SendBuf(sCMD, 2);
}
static uint8_t BL_SendCMDSetBuffer(const uint8_t *buf, uint16_t nbytes)
{
uint8_t sCMD[] = {CMD_SET_BUFFER, 0, uint8_t(nbytes>>8), uint8_t(nbytes&0xff)};
if (!BL_SendBuf(sCMD, 4)) {
return false;
}
uint8_t ack;
if ((ack = BL_GetACK()) != brNONE) {
hal.console->printf("BL_SendCMDSetBuffer ack failed 0x%02x\n", ack);
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
if (!BL_SendBuf(buf, nbytes)) {
hal.console->printf("BL_SendCMDSetBuffer send failed\n");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
return (BL_GetACK(40) == brSUCCESS);
}
static bool BL_WriteA(uint8_t cmd, const uint8_t *buf, uint16_t nbytes, uint32_t timeout)
{
if (BL_SendCMDSetAddress()) {
if (!BL_SendCMDSetBuffer(buf, nbytes)) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
uint8_t sCMD[] = {cmd, 0x01};
BL_SendBuf(sCMD, 2);
return (BL_GetACK(timeout) == brSUCCESS);
}
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
static uint8_t BL_WriteFlash(const uint8_t *buf, uint16_t n)
{
return BL_WriteA(CMD_PROG_FLASH, buf, n, 250);
}
static bool BL_VerifyFlash(const uint8_t *buf, uint16_t n)
{
if (BL_SendCMDSetAddress()) {
if (!BL_SendCMDSetBuffer(buf, n)) {
return false;
}
uint8_t sCMD[] = {CMD_VERIFY_FLASH_ARM, 0x01};
BL_SendBuf(sCMD, 2);
uint8_t ack = BL_GetACK(40);
switch (ack) {
case brSUCCESS:
blheli.ack = ACK_OK;
break;
case brERRORVERIFY:
blheli.ack = ACK_I_VERIFY_ERROR;
break;
default:
blheli.ack = ACK_D_GENERAL_ERROR;
break;
}
return true;
}
return false;
}
/*
process a blheli 4way command from GCS
*/
static void blheli_process_command(void)
{
hal.console->printf("BLHeli cmd 0x%02x len=%u\n", blheli.command, blheli.param_len);
blheli.ack = ACK_OK;
switch (blheli.command) {
case cmd_InterfaceTestAlive: {
hal.console->printf("cmd_InterfaceTestAlive\n");
BL_SendCMDKeepAlive();
if (blheli.ack != ACK_OK) {
setDisconnected();
}
uint8_t b = 0;
blheli_send_reply(&b, 1);
break;
}
case cmd_ProtocolGetVersion: {
hal.console->printf("cmd_ProtocolGetVersion\n");
uint8_t buf[1];
buf[0] = SERIAL_4WAY_PROTOCOL_VER;
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceGetName: {
hal.console->printf("cmd_InterfaceGetName\n");
uint8_t buf[5] = { 4, 'A', 'R', 'D', 'U' };
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceGetVersion: {
hal.console->printf("cmd_InterfaceGetVersion\n");
uint8_t buf[2] = { SERIAL_4WAY_VERSION_HI, SERIAL_4WAY_VERSION_LO };
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceExit: {
hal.console->printf("cmd_InterfaceExit\n");
msp.escMode = PROTOCOL_NONE;
uint8_t b = 0;
blheli_send_reply(&b, 1);
hal.rcout->serial_end();
break;
}
case cmd_DeviceReset: {
hal.console->printf("cmd_DeviceReset(%u)\n", unsigned(blheli.buf[0]));
blheli.chan = blheli.buf[0];
switch (blheli.interface_mode) {
case imSIL_BLB:
case imATM_BLB:
case imARM_BLB:
BL_SendCMDRunRestartBootloader();
break;
case imSK:
break;
}
blheli_send_reply(&blheli.chan, 1);
setDisconnected();
break;
}
case cmd_DeviceInitFlash: {
hal.console->printf("cmd_DeviceInitFlash(%u)\n", unsigned(blheli.buf[0]));
blheli.chan = blheli.buf[0];
for (uint8_t tries=0; tries<5; tries++) {
blheli.ack = ACK_OK;
setDisconnected();
if (BL_ConnectEx()) {
break;
}
hal.scheduler->delay(5);
}
uint8_t buf[4] = {blheli.deviceInfo[0],
blheli.deviceInfo[1],
blheli.deviceInfo[2],
blheli.deviceInfo[3]}; // device ID
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceSetMode: {
hal.console->printf("cmd_InterfaceSetMode(%u)\n", unsigned(blheli.buf[0]));
blheli.interface_mode = blheli.buf[0];
blheli_send_reply(&blheli.interface_mode, 1);
break;
}
case cmd_DeviceRead: {
uint16_t nbytes = blheli.buf[0]?blheli.buf[0]:256;
hal.console->printf("cmd_DeviceRead(%u) n=%u\n", blheli.chan, nbytes);
uint8_t buf[nbytes];
if (!BL_ReadA(CMD_READ_FLASH_SIL, buf, nbytes)) {
nbytes = 1;
}
blheli_send_reply(buf, nbytes);
break;
}
case cmd_DevicePageErase: {
uint8_t page = blheli.buf[0];
hal.console->printf("cmd_DevicePageErase(%u) im=%u\n", page, blheli.interface_mode);
switch (blheli.interface_mode) {
case imSIL_BLB:
case imARM_BLB: {
if (blheli.interface_mode == imARM_BLB) {
// Address =Page * 1024
blheli.address = page << 10;
} else {
// Address =Page * 512
blheli.address = page << 9;
}
hal.console->printf("ARM PageErase 0x%04x\n", blheli.address);
BL_PageErase();
blheli.address = 0;
blheli_send_reply(&page, 1);
break;
}
default:
blheli.ack = ACK_I_INVALID_CMD;
blheli_send_reply(&page, 1);
break;
}
break;
}
case cmd_DeviceWrite: {
uint16_t nbytes = blheli.param_len;
hal.console->printf("cmd_DeviceWrite n=%u im=%u\n", nbytes, blheli.interface_mode);
uint8_t buf[nbytes];
memcpy(buf, blheli.buf, nbytes);
switch (blheli.interface_mode) {
case imSIL_BLB:
case imATM_BLB:
case imARM_BLB: {
BL_WriteFlash(buf, nbytes);
break;
}
case imSK: {
hal.console->printf("Unsupported flash mode imSK\n");
break;
}
}
uint8_t b=0;
blheli_send_reply(&b, 1);
break;
}
case cmd_DeviceVerify: {
uint16_t nbytes = blheli.param_len;
hal.console->printf("cmd_DeviceWrite n=%u im=%u\n", nbytes, blheli.interface_mode);
switch (blheli.interface_mode) {
case imARM_BLB: {
uint8_t buf[nbytes];
memcpy(buf, blheli.buf, nbytes);
BL_VerifyFlash(buf, nbytes);
break;
}
default:
blheli.ack = ACK_I_INVALID_CMD;
break;
}
uint8_t b=0;
blheli_send_reply(&b, 1);
break;
}
case cmd_DeviceEraseAll:
case cmd_DeviceC2CK_LOW:
case cmd_DeviceReadEEprom:
case cmd_DeviceWriteEEprom:
default:
// ack=unknown command
blheli.ack = ACK_I_INVALID_CMD;
hal.console->printf("Unknown BLHeli protocol 0x%02x\n", blheli.command);
uint8_t b = 0;
blheli_send_reply(&b, 1);
break;
}
}
static void test_dshot_out(void)
{
hal.rcout->cork();
for (uint8_t i=0; i<6; i++) {
hal.rcout->enable_ch(i);
hal.rcout->write(i, 1100+i*100);
}
hal.rcout->push();
}
static void MSP_protocol_update(void)
{
uint32_t n = hal.uartC->available();
if (n > 0) {
for (uint32_t i=0; i<n; i++) {
int16_t b = hal.uartC->read();
if (b < 0) {
break;
}
if (msp.escMode == PROTOCOL_4WAY && blheli.state == BLHELI_IDLE && b == '$') {
hal.console->printf("Change to MSP mode\n");
msp.escMode = PROTOCOL_NONE;
hal.rcout->serial_end();
}
if (msp.escMode != PROTOCOL_4WAY && msp.state == MSP_IDLE && b == '/') {
hal.console->printf("Change to BLHeli mode\n");
msp.escMode = PROTOCOL_4WAY;
}
if (msp.escMode == PROTOCOL_4WAY) {
blheli_4way_process_byte(b);
} else {
msp_process_byte(b);
}
}
}
if (msp.escMode == PROTOCOL_4WAY) {
if (blheli.state == BLHELI_COMMAND_RECEIVED) {
blheli_process_command();
blheli.state = BLHELI_IDLE;
msp.state = MSP_IDLE;
}
} else if (msp.state == MSP_COMMAND_RECEIVED) {
if (msp.packetType == MSP_PACKET_COMMAND) {
msp_process_command();
}
msp.state = MSP_IDLE;
blheli.state = BLHELI_IDLE;
}
static uint32_t last_tick_ms;
uint32_t now = AP_HAL::millis();
if (now - last_tick_ms > 1000) {
hal.console->printf("tick\n");
last_tick_ms = now;
while (hal.console->available() > 0) {
hal.console->read();
}
#if 0
BL_ConnectEx();
hal.scheduler->delay(5);
blheli.chan = 0;
blheli.address = 0x7c00;
BL_ReadA(CMD_READ_FLASH_SIL, blheli.buf, 256);
#endif
}
}
static void test_output_modes(void)
{
static uint8_t mode;
hal.console->printf("Test mode %u\n", mode);
switch (mode) {
case 0:
// test normal
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_NORMAL);
hal.rcout->set_freq(0xF, 250);
break;
case 1:
// test oneshot
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_ONESHOT);
hal.rcout->set_freq(0xF, 400);
break;
case 2:
// test brushed
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_BRUSHED);
hal.rcout->set_freq(0xF, 16000);
break;
case 3:
// test dshot150
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_DSHOT150);
break;
case 4:
// test dshot300
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_DSHOT300);
break;
case 5:
// test dshot600
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_DSHOT600);
break;
case 6:
// test dshot1200
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_DSHOT1200);
break;
case 7:
// test serial
hal.rcout->serial_setup_output(0, 19200);
hal.scheduler->delay(10);
hal.rcout->serial_write_bytes((const uint8_t *)"Hello World", 12);
hal.scheduler->delay(10);
hal.rcout->serial_end();
hal.scheduler->delay(10);
break;
case 8:
hal.rcout->set_output_mode(0xF, AP_HAL::RCOutput::MODE_PWM_NONE);
break;
default:
break;
}
hal.rcout->cork();
hal.rcout->enable_ch(0);
hal.rcout->enable_ch(4);
hal.rcout->enable_ch(5);
hal.rcout->write(0, 1100 + mode*100);
hal.rcout->write(4, 1000 + mode*100);
hal.rcout->write(5, 1000 + mode*100);
hal.rcout->push();
mode = (mode+1) % 9;
}
void setup(void) {
hal.console->begin(115200);
hal.scheduler->delay(1000);
hal.console->printf("Starting\n");
hal.uartC->begin(115200, 256, 256);
hal.rcout->init();
hal.rcout->set_esc_scaling(1000, 2000);
hal.rcout->cork();
for (uint8_t i=0; i<NUM_ESC_CHANNELS; i++) {
hal.rcout->enable_ch(i);
hal.rcout->write(i, 1000);
}
hal.rcout->push();
}
void loop(void)
{
hal.scheduler->delay(200);
//test_dshot_out();
//MSP_protocol_update();
test_output_modes();
// allow for firmware upload without power cycling for rapid
// development
if (hal.console->available() > 10) {
hal.console->printf("rebooting\n");
hal.scheduler->delay(1000);
hal.scheduler->reboot(false);
}
}
AP_HAL_MAIN();