ardupilot/libraries/AP_Math/polygon.cpp
Andrew Tridgell 9b6bab8904 AP_Math: better polygon algorithm
this one seems to do better with single precision floating point
2011-12-16 20:11:51 +11:00

57 lines
1.8 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* polygon.cpp
* Copyright (C) Andrew Tridgell 2011
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Math.h"
/*
The point in polygon algorithm is based on:
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
*/
/*
Polygon_outside(): test for a point in a polygon
Input: P = a point,
V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
Return: true if P is outside the polygon
*/
bool Polygon_outside(const Vector2f &P, const Vector2f *V, unsigned n)
{
unsigned i, j;
bool outside = true;
for (i = 0, j = n-1; i < n; j = i++) {
if ( ((V[i].y > P.y) != (V[j].y > P.y)) &&
(P.x < (V[j].x - V[i].x) * (P.y - V[i].y) / (V[j].y - V[i].y) + V[i].x) )
outside = !outside;
}
return outside;
}
/*
check if a polygon is complete.
We consider a polygon to be complete if we have at least 4 points,
and the first point is the same as the last point. That is the
minimum requirement for the Polygon_outside function to work
*/
bool Polygon_complete(const Vector2f *V, unsigned n)
{
return (n >= 4 && V[n-1].x == V[0].x && V[n-1].y == V[0].y);
}