ardupilot/ArduSub/control_stabilize.cpp
2023-07-16 11:30:43 -03:00

104 lines
4.3 KiB
C++

#include "Sub.h"
// stabilize_init - initialise stabilize controller
bool Sub::stabilize_init()
{
// set target altitude to zero for reporting
pos_control.set_pos_target_z_cm(0);
if(prev_control_mode != control_mode_t::ALT_HOLD) {
last_roll = 0;
last_pitch = 0;
}
last_pilot_heading = ahrs.yaw_sensor;
return true;
}
// stabilize_run - runs the main stabilize controller
// should be called at 100hz or more
void Sub::stabilize_run()
{
// if not armed set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
attitude_control.set_throttle_out(0,true,g.throttle_filt);
attitude_control.relax_attitude_controllers();
last_pilot_heading = ahrs.yaw_sensor;
last_roll = 0;
last_pitch = 0;
return;
}
handle_attitude();
// output pilot's throttle
attitude_control.set_throttle_out(channel_throttle->norm_input(), false, g.throttle_filt);
//control_in is range -1000-1000
//radio_in is raw pwm value
motors.set_forward(channel_forward->norm_input());
motors.set_lateral(channel_lateral->norm_input());
}
void Sub::handle_attitude()
{
uint32_t tnow = AP_HAL::millis();
float desired_roll_rate, desired_pitch_rate, desired_yaw_rate;
// initialize vertical speeds and acceleration
pos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
handle_mavlink_attitude_target();
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), desired_roll_rate, desired_pitch_rate, attitude_control.get_althold_lean_angle_max());
float yaw_input = channel_yaw->pwm_to_angle_dz_trim(channel_yaw->get_dead_zone() * gain, channel_yaw->get_radio_trim());
desired_yaw_rate = get_pilot_desired_yaw_rate(yaw_input);
switch (g.control_frame)
{
case MAV_FRAME_BODY_FRD:
{
if (abs(desired_roll_rate) > 50 || abs(desired_pitch_rate) > 50 || abs(desired_yaw_rate) > 50)
{
attitude_control.input_rate_bf_roll_pitch_yaw(desired_roll_rate, desired_pitch_rate, desired_yaw_rate);
Quaternion attitude_target = attitude_control.get_attitude_target_quat();
last_roll = degrees(attitude_target.get_euler_roll()) * 100;
last_pitch = degrees(attitude_target.get_euler_pitch()) * 100;
last_pilot_heading = degrees(attitude_target.get_euler_yaw()) * 100;
}
else
{
attitude_control.input_euler_angle_roll_pitch_yaw(last_roll, last_pitch, last_pilot_heading, true);
}
}
break;
default:
{
if (!is_zero(desired_yaw_rate))
{ // call attitude controller with rate yaw determined by pilot input
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(last_roll, last_pitch, desired_yaw_rate);
last_pilot_heading = ahrs.yaw_sensor;
last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading
}
else
{ // hold current heading
// this check is required to prevent bounce back after very fast yaw maneuvers
// the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stopped
if (tnow < last_pilot_yaw_input_ms + 250)
{ // give 250ms to slow down, then set target heading
desired_yaw_rate = 0; // Stop rotation on yaw axis
// call attitude controller with target yaw rate = 0 to decelerate onqq yaw axis
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(last_roll, last_pitch, desired_yaw_rate);
last_pilot_heading = ahrs.yaw_sensor; // update heading to hold
}
else
{ // call attitude controller holding absolute absolute bearing
attitude_control.input_euler_angle_roll_pitch_yaw(last_roll, last_pitch, last_pilot_heading, true);
}
}
}
}
}