ardupilot/libraries/AP_NavEKF/Models/AttErrVecMathExample/RunRealData.m

86 lines
3.2 KiB
Matlab

%% Set initial conditions
clear all;
load('fltTest.mat');
startDelayTime = 100; % number of seconds to delay filter start (used to simulate in-flight restart)
dt = 1/50;
indexLimit = length(IMU);
magIndexlimit = length(MAG);
statesLog = zeros(10,indexLimit);
eulLog = zeros(4,indexLimit);
velInnovLog = zeros(4,indexLimit);
angErrLog = zeros(2,indexLimit);
decInnovLog = zeros(2,magIndexlimit);
velInnovVarLog = velInnovLog;
decInnovVarLog = decInnovLog;
% initialise the state vector and quaternion
states = zeros(9,1);
quat = [1;0;0;0];
Tbn = Quat2Tbn(quat);
% average last 10 accel readings to reduce effect of noise
initAccel(1) = mean(IMU(1:10,6));
initAccel(2) = mean(IMU(1:10,7));
initAccel(3) = mean(IMU(1:10,8));
% Use averaged accel readings to align tilt
quat = AlignTilt(quat,initAccel);
% Set the expected declination
measDec = 0.18;
% define the state covariances
Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components
Sigma_dAngBias = 5*pi/180*dt; % 1 Sigma uncertainty in delta angle bias
Sigma_angErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)
covariance = single(diag([Sigma_angErr*[1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]].^2));
%% Main Loop
magIndex = 1;
time = 0;
angErr = 0;
headingAligned = 0;
% delay start by a minimum of 10 IMU samples to allow for initial tilt
% alignment delay
startIndex = max(11,ceil(startDelayTime/dt));
for index = startIndex:indexLimit
time=time+dt + startIndex*dt;
% read IMU measurements
angRate = IMU(index,3:5)';
% switch in a bias offset to test the filter
if (time > +inf)
angRate = angRate + [1;-1;1]*pi/180;
end
accel = IMU(index,6:8)';
% predict states
[quat, states, Tbn, delAng, delVel] = PredictStates(quat,states,angRate,accel,dt);
statesLog(1,index) = time;
statesLog(2:10,index) = states;
eulLog(1,index) = time;
eulLog(2:4,index) = QuatToEul(quat);
% predict covariance matrix
covariance = PredictCovariance(delAng,delVel,quat,states,covariance,dt);
% fuse velocity measurements - use synthetic measurements
measVel = [0;0;0];
[quat,states,angErr,covariance,velInnov,velInnovVar] = FuseVelocity(quat,states,covariance,measVel);
velInnovLog(1,index) = time;
velInnovLog(2:4,index) = velInnov;
velInnovVarLog(1,index) = time;
velInnovVarLog(2:4,index) = velInnovVar;
angErrLog(1,index) = time;
angErrLog(2,index) = angErr;
% read magnetometer measurements
while ((MAG(magIndex,1) < IMU(index,1)) && (magIndex < magIndexlimit))
magIndex = magIndex + 1;
magBody = 0.001*MAG(magIndex,3:5)';
if (time >= 1.0 && headingAligned==0 && angErr < 1e-3)
quat = AlignHeading(quat,magBody,measDec);
headingAligned = 1;
end
% fuse magnetometer measurements if new data available and when tilt has settled
if (headingAligned == 1)
[quat,states,covariance,decInnov,decInnovVar] = FuseMagnetometer(quat,states,covariance,magBody,measDec,Tbn);
decInnovLog(1,magIndex) = time;
decInnovLog(2,magIndex) = decInnov;
decInnovVarLog(1,magIndex) = time;
decInnovVarLog(2,magIndex) = decInnovVar;
end
end
end
%% Generate plots
PlotData;