ardupilot/libraries/AP_IOMCU/iofirmware/analog.cpp
2023-12-11 20:46:28 +11:00

160 lines
3.4 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
analog capture for IOMCU. This uses direct register access to avoid
using up a DMA channel and to minimise latency. We capture a single
sample at a time
*/
#include "ch.h"
#include "hal.h"
#include "analog.h"
#if HAL_USE_ADC != TRUE
#error "HAL_USE_ADC must be set"
#endif
// we build this file with optimisation to lower the interrupt
// latency.
#pragma GCC optimize("O2")
extern "C" {
extern void Vector88();
}
#define STM32_ADC1_NUMBER 18
#define STM32_ADC1_HANDLER Vector88
const uint32_t VSERVO_CHANNEL = ADC_SQR3_SQ1_N(ADC_CHANNEL_IN4);
const uint32_t VRSSI_CHANNEL = ADC_SQR3_SQ1_N(ADC_CHANNEL_IN5);
static uint16_t vrssi_val = 0xFFFF;
static uint16_t vservo_val = 0xFFFF;
static bool sample_vrssi_enable = true;
static bool sampling_vservo = true;
/*
initialise ADC capture
*/
void adc_init(void)
{
rccEnableADC1(true);
ADC1->CR1 = 0;
ADC1->CR2 = ADC_CR2_ADON;
/* Reset calibration just to be safe.*/
ADC1->CR2 = ADC_CR2_ADON | ADC_CR2_RSTCAL;
while ((ADC1->CR2 & ADC_CR2_RSTCAL) != 0)
;
/* Calibration.*/
ADC1->CR2 = ADC_CR2_ADON | ADC_CR2_CAL;
while ((ADC1->CR2 & ADC_CR2_CAL) != 0)
;
/* set channels 4 and 5 for 28.5us sample time */
ADC1->SMPR2 = ADC_SMPR2_SMP_AN4(ADC_SAMPLE_28P5) | ADC_SMPR2_SMP_AN5(ADC_SAMPLE_28P5);
/* capture one sample at a time */
ADC1->SQR1 = 0;
ADC1->SQR2 = 0;
ADC1->CR1 |= ADC_CR1_EOCIE;
nvicEnableVector(STM32_ADC1_NUMBER, STM32_ADC_ADC1_IRQ_PRIORITY);
}
/*
capture VSERVO in mV
*/
void adc_enable_vrssi(void)
{
sample_vrssi_enable = true;
}
/*
don't capture VRSSI
*/
void adc_disable_vrssi(void)
{
sample_vrssi_enable = false;
}
/*
capture one sample on a channel
*/
void adc_sample_channels()
{
chSysLock();
if (ADC1->SR & ADC_SR_STRT) {
return; // still waiting for sample
}
/* capture another sample */
ADC1->CR2 |= ADC_CR2_ADON;
chSysUnlock();
}
/*
capture VSERVO in mV
*/
uint16_t adc_vservo(void)
{
return vservo_val;
}
/*
capture VRSSI in mV
*/
uint16_t adc_vrssi(void)
{
return vrssi_val;
}
static void adc_read_sample()
{
if (ADC1->SR & ADC_SR_EOC) {
ADC1->SR &= ~(ADC_SR_EOC | ADC_SR_STRT);
if (sampling_vservo) {
vservo_val = ADC1->DR;
if (sample_vrssi_enable) {
/* capture another sample */
ADC1->SQR3 = VRSSI_CHANNEL;
ADC1->CR2 |= ADC_CR2_ADON;
sampling_vservo = false;
}
} else {
vrssi_val = ADC1->DR;
ADC1->SQR3 = VSERVO_CHANNEL;
sampling_vservo = true;
}
}
}
OSAL_IRQ_HANDLER(STM32_ADC1_HANDLER) {
OSAL_IRQ_PROLOGUE();
chSysLockFromISR();
adc_read_sample();
chSysUnlockFromISR();
OSAL_IRQ_EPILOGUE();
}