ardupilot/ArduPlane/ArduPlane.pde

1284 lines
43 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduPlane V2.71"
/*
* Lead developer: Andrew Tridgell
*
* Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher, Paul Riseborough, Brandon Jones, Jon Challinger
* Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon
* Please contribute your ideas!
*
*
* This firmware is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <AP_Common.h>
#include <AP_Progmem.h>
#include <AP_HAL.h>
#include <AP_Menu.h>
#include <AP_Param.h>
#include <AP_GPS.h> // ArduPilot GPS library
#include <AP_Baro.h> // ArduPilot barometer library
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_ADC_AnalogSource.h>
#include <AP_InertialSensor.h> // Inertial Sensor Library
#include <AP_AHRS.h> // ArduPilot Mega DCM Library
#include <PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
#include <Filter.h> // Filter library
#include <AP_Buffer.h> // APM FIFO Buffer
#include <AP_Relay.h> // APM relay
#include <AP_Camera.h> // Photo or video camera
#include <AP_Airspeed.h>
#include <memcheck.h>
#include <APM_OBC.h>
#include <APM_Control.h>
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <AP_Mount.h> // Camera/Antenna mount
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
#include <DataFlash.h>
#include <SITL.h>
// optional new controller library
#if APM_CONTROL == ENABLED
#include <APM_Control.h>
#endif
#include <AP_Navigation.h>
#include <AP_L1_Control.h>
// Pre-AP_HAL compatibility
#include "compat.h"
// Configuration
#include "config.h"
// Local modules
#include "defines.h"
#include "Parameters.h"
#include "GCS.h"
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
#include <AP_HAL_PX4.h>
#include <AP_HAL_Empty.h>
AP_HAL::BetterStream* cliSerial;
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
////////////////////////////////////////////////////////////////////////////////
// Outback Challenge Failsafe Support
////////////////////////////////////////////////////////////////////////////////
#if OBC_FAILSAFE == ENABLED
APM_OBC obc;
#endif
////////////////////////////////////////////////////////////////////////////////
// the rate we run the main loop at
////////////////////////////////////////////////////////////////////////////////
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_50HZ;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
void gcs_send_text_fmt(const prog_char_t *fmt, ...);
////////////////////////////////////////////////////////////////////////////////
// DataFlash
////////////////////////////////////////////////////////////////////////////////
#if LOGGING_ENABLED == ENABLED
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
DataFlash_APM1 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM2
DataFlash_APM2 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
DataFlash_SITL DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_PX4
static DataFlash_File DataFlash("/fs/microsd/APM/logs");
#else
// no dataflash driver
DataFlash_Empty DataFlash;
#endif
#endif
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if CONFIG_ADC == ENABLED
static AP_ADC_ADS7844 adc;
#endif
#if CONFIG_BARO == AP_BARO_BMP085
static AP_Baro_BMP085 barometer;
#elif CONFIG_BARO == AP_BARO_PX4
static AP_Baro_PX4 barometer;
#elif CONFIG_BARO == AP_BARO_HIL
static AP_Baro_BMP085_HIL barometer;
#elif CONFIG_BARO == AP_BARO_MS5611
#if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi);
#elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c);
#else
#error Unrecognized CONFIG_MS5611_SERIAL setting.
#endif
#else
#error Unrecognized CONFIG_BARO setting
#endif
#if CONFIG_COMPASS == AP_COMPASS_PX4
static AP_Compass_PX4 compass;
#elif CONFIG_COMPASS == AP_COMPASS_HMC5843
static AP_Compass_HMC5843 compass;
#elif CONFIG_COMPASS == AP_COMPASS_HIL
static AP_Compass_HIL compass;
#else
#error Unrecognized CONFIG_COMPASS setting
#endif
// GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
AP_GPS_MTK19 g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_HIL
AP_GPS_HIL g_gps_driver;
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#if CONFIG_INS_TYPE == CONFIG_INS_MPU6000
AP_InertialSensor_MPU6000 ins;
#elif CONFIG_INS_TYPE == CONFIG_INS_PX4
AP_InertialSensor_PX4 ins;
#elif CONFIG_INS_TYPE == CONFIG_INS_STUB
AP_InertialSensor_Stub ins;
#elif CONFIG_INS_TYPE == CONFIG_INS_OILPAN
AP_InertialSensor_Oilpan ins( &adc );
#else
#error Unrecognised CONFIG_INS_TYPE setting.
#endif // CONFIG_INS_TYPE
AP_AHRS_DCM ahrs(&ins, g_gps);
static AP_L1_Control L1_controller(&ahrs);
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
SITL sitl;
#endif
// Training mode
static bool training_manual_roll; // user has manual roll control
static bool training_manual_pitch; // user has manual pitch control
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
static GCS_MAVLINK gcs0;
static GCS_MAVLINK gcs3;
// selected navigation controller
static AP_Navigation *nav_controller = &L1_controller;
////////////////////////////////////////////////////////////////////////////////
// Analog Inputs
////////////////////////////////////////////////////////////////////////////////
static AP_HAL::AnalogSource *pitot_analog_source;
// a pin for reading the receiver RSSI voltage. The scaling by 0.25
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink
static AP_HAL::AnalogSource *rssi_analog_source;
static AP_HAL::AnalogSource *vcc_pin;
static AP_HAL::AnalogSource * batt_volt_pin;
static AP_HAL::AnalogSource * batt_curr_pin;
////////////////////////////////////////////////////////////////////////////////
// Relay
////////////////////////////////////////////////////////////////////////////////
static AP_Relay relay;
// Camera
#if CAMERA == ENABLED
static AP_Camera camera(&relay);
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
// APM2 only
#if USB_MUX_PIN > 0
static bool usb_connected;
#endif
/* Radio values
* Channel assignments
* 1 Ailerons
* 2 Elevator
* 3 Throttle
* 4 Rudder
* 5 Aux5
* 6 Aux6
* 7 Aux7
* 8 Aux8/Mode
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
* See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as MANUAL, FBW-A, AUTO
enum FlightMode control_mode = INITIALISING;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
uint8_t oldSwitchPosition;
// This is used to enable the inverted flight feature
bool inverted_flight = false;
static struct {
// These are trim values used for elevon control
// For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are
// equivalent aileron and elevator, not left and right elevon
uint16_t trim1;
uint16_t trim2;
// These are used in the calculation of elevon1_trim and elevon2_trim
uint16_t ch1_temp;
uint16_t ch2_temp;
} elevon = {
trim1 : 1500,
trim2 : 1500,
ch1_temp : 1500,
ch2_temp : 1500
};
// A flag if GCS joystick control is in use
static bool rc_override_active = false;
////////////////////////////////////////////////////////////////////////////////
// Failsafe
////////////////////////////////////////////////////////////////////////////////
// A tracking variable for type of failsafe active
// Used for failsafe based on loss of RC signal or GCS signal
static int16_t failsafe;
// Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold
// RC receiver should be set up to output a low throttle value when signal is lost
static bool ch3_failsafe;
// A timer used to help recovery from unusual attitudes. If we enter an unusual attitude
// while in autonomous flight this variable is used to hold roll at 0 for a recovery period
static uint8_t crash_timer;
// the time when the last HEARTBEAT message arrived from a GCS
static uint32_t last_heartbeat_ms;
// A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal
static uint32_t ch3_failsafe_timer = 0;
////////////////////////////////////////////////////////////////////////////////
// LED output
////////////////////////////////////////////////////////////////////////////////
// state of the GPS light (on/off)
static bool GPS_light;
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
// A counter used to count down valid gps fixes to allow the gps estimate to settle
// before recording our home position (and executing a ground start if we booted with an air start)
static uint8_t ground_start_count = 5;
// Used to compute a speed estimate from the first valid gps fixes to decide if we are
// on the ground or in the air. Used to decide if a ground start is appropriate if we
// booted with an air start.
static int16_t ground_start_avg;
// true if we have a position estimate from AHRS
static bool have_position;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// Direction held during phases of takeoff and landing
// deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use
// this is a 0..36000 value, or -1 for disabled
static int32_t hold_course_cd = -1; // deg * 100 dir of plane
// There may be two active commands in Auto mode.
// This indicates the active navigation command by index number
static uint8_t nav_command_index;
// This indicates the active non-navigation command by index number
static uint8_t non_nav_command_index;
// This is the command type (eg navigate to waypoint) of the active navigation command
static uint8_t nav_command_ID = NO_COMMAND;
static uint8_t non_nav_command_ID = NO_COMMAND;
////////////////////////////////////////////////////////////////////////////////
// Airspeed
////////////////////////////////////////////////////////////////////////////////
// The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met.
// Also used for flap deployment criteria. Centimeters per second.
static int32_t target_airspeed_cm;
// The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second.
static float airspeed_error_cm;
// The calculated total energy error (kinetic (altitude) plus potential (airspeed)).
// Used by the throttle controller
static int32_t energy_error;
// kinetic portion of energy error (m^2/s^2)
static int32_t airspeed_energy_error;
// An amount that the airspeed should be increased in auto modes based on the user positioning the
// throttle stick in the top half of the range. Centimeters per second.
static int16_t airspeed_nudge_cm;
// Similar to airspeed_nudge, but used when no airspeed sensor.
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
static int16_t throttle_nudge = 0;
// receiver RSSI
static uint8_t receiver_rssi;
////////////////////////////////////////////////////////////////////////////////
// Ground speed
////////////////////////////////////////////////////////////////////////////////
// The amount current ground speed is below min ground speed. Centimeters per second
static int32_t groundspeed_undershoot = 0;
// Difference between current altitude and desired altitude. Centimeters
static int32_t altitude_error_cm;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
// Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup.
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
// Battery pack 1 instantaneous currrent draw. Amperes
static float current_amps1;
// Totalized current (Amp-hours) from battery 1
static float current_total1;
// To Do - Add support for second battery pack
//static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter
//static float current_amps2; // Current (Amperes) draw from battery 2
//static float current_total2; // Totalized current (Amp-hours) from battery 2
////////////////////////////////////////////////////////////////////////////////
// Airspeed Sensors
////////////////////////////////////////////////////////////////////////////////
AP_Airspeed airspeed;
////////////////////////////////////////////////////////////////////////////////
// Altitude Sensor variables
////////////////////////////////////////////////////////////////////////////////
// flight mode specific
////////////////////////////////////////////////////////////////////////////////
// Flag for using gps ground course instead of INS yaw. Set false when takeoff command in process.
static bool takeoff_complete = true;
// Flag to indicate if we have landed.
//Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown
static bool land_complete;
// Altitude threshold to complete a takeoff command in autonomous modes. Centimeters
static int32_t takeoff_altitude;
// Minimum pitch to hold during takeoff command execution. Hundredths of a degree
static int16_t takeoff_pitch_cd;
// this controls throttle suppression in auto modes
static bool throttle_suppressed;
////////////////////////////////////////////////////////////////////////////////
// Loiter management
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Navigation control variables
////////////////////////////////////////////////////////////////////////////////
// The instantaneous desired bank angle. Hundredths of a degree
static int32_t nav_roll_cd;
// The instantaneous desired pitch angle. Hundredths of a degree
static int32_t nav_pitch_cd;
////////////////////////////////////////////////////////////////////////////////
// Waypoint distances
////////////////////////////////////////////////////////////////////////////////
// Distance between plane and next waypoint. Meters
// is not static because AP_Camera uses it
uint32_t wp_distance;
// Distance between previous and next waypoint. Meters
static uint32_t wp_totalDistance;
/*
meta data to support counting the number of circles in a loiter
*/
static struct {
// previous target bearing, used to update sum_cd
int32_t old_target_bearing_cd;
// Total desired rotation in a loiter. Used for Loiter Turns commands.
int32_t total_cd;
// total angle completed in the loiter so far
int32_t sum_cd;
// Direction for loiter. 1 for clockwise, -1 for counter-clockwise
int8_t direction;
// start time of the loiter. Milliseconds.
uint32_t start_time_ms;
// The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds.
uint32_t time_max_ms;
} loiter;
// event control state
enum event_type {
EVENT_TYPE_RELAY=0,
EVENT_TYPE_SERVO=1
};
static struct {
enum event_type type;
// when the event was started in ms
uint32_t start_time_ms;
// how long to delay the next firing of event in millis
uint16_t delay_ms;
// how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles
int16_t repeat;
// RC channel for servos
uint8_t rc_channel;
// PWM for servos
uint16_t servo_value;
// the value used to cycle events (alternate value to event_value)
uint16_t undo_value;
} event_state;
////////////////////////////////////////////////////////////////////////////////
// Conditional command
////////////////////////////////////////////////////////////////////////////////
// A value used in condition commands (eg delay, change alt, etc.)
// For example in a change altitude command, it is the altitude to change to.
static int32_t condition_value;
// A starting value used to check the status of a conditional command.
// For example in a delay command the condition_start records that start time for the delay
static uint32_t condition_start;
// A value used in condition commands. For example the rate at which to change altitude.
static int16_t condition_rate;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
// Location structure defined in AP_Common
////////////////////////////////////////////////////////////////////////////////
// The home location used for RTL. The location is set when we first get stable GPS lock
static struct Location home;
// Flag for if we have g_gps lock and have set the home location
static bool home_is_set;
// The location of the previous waypoint. Used for track following and altitude ramp calculations
static struct Location prev_WP;
// The plane's current location
static struct Location current_loc;
// The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations.
static struct Location next_WP;
// The location of the active waypoint in Guided mode.
static struct Location guided_WP;
// The location structure information from the Nav command being processed
static struct Location next_nav_command;
// The location structure information from the Non-Nav command being processed
static struct Location next_nonnav_command;
////////////////////////////////////////////////////////////////////////////////
// Altitude / Climb rate control
////////////////////////////////////////////////////////////////////////////////
// The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters
static int32_t target_altitude_cm;
// Altitude difference between previous and current waypoint. Centimeters
static int32_t offset_altitude_cm;
////////////////////////////////////////////////////////////////////////////////
// INS variables
////////////////////////////////////////////////////////////////////////////////
// The main loop execution time. Seconds
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
// Timer used to accrue data and trigger recording of the performanc monitoring log message
static int32_t perf_mon_timer;
// The maximum main loop execution time recorded in the current performance monitoring interval
static int16_t G_Dt_max = 0;
// The number of gps fixes recorded in the current performance monitoring interval
static uint8_t gps_fix_count = 0;
// A variable used by developers to track performanc metrics.
// Currently used to record the number of GCS heartbeat messages received
static int16_t pmTest1 = 0;
////////////////////////////////////////////////////////////////////////////////
// System Timers
////////////////////////////////////////////////////////////////////////////////
// Time in miliseconds of start of main control loop. Milliseconds
static uint32_t fast_loopTimer_ms;
// Time Stamp when fast loop was complete. Milliseconds
static uint32_t fast_loopTimeStamp_ms;
// Number of milliseconds used in last main loop cycle
static uint8_t delta_ms_fast_loop;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count;
// Time in miliseconds of start of medium control loop. Milliseconds
static uint32_t medium_loopTimer_ms;
// Counters for branching from main control loop to slower loops
static uint8_t medium_loopCounter;
// Number of milliseconds used in last medium loop cycle
static uint8_t delta_ms_medium_loop;
// Counters for branching from medium control loop to slower loops
static uint8_t slow_loopCounter;
// Counter to trigger execution of very low rate processes
static uint8_t superslow_loopCounter;
// Counter to trigger execution of 1 Hz processes
static uint8_t counter_one_herz;
// % MCU cycles used
static float load;
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount(&current_loc, g_gps, &ahrs, 0);
#endif
#if MOUNT2 == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount2(&current_loc, g_gps, &ahrs, 1);
#endif
#if CAMERA == ENABLED
//pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82)
#endif
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
// setup the var_info table
AP_Param param_loader(var_info, WP_START_BYTE);
void setup() {
// this needs to be the first call, as it fills memory with
// sentinel values
memcheck_init();
cliSerial = hal.console;
// load the default values of variables listed in var_info[]
AP_Param::setup_sketch_defaults();
rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE, 0.25);
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC
pitot_analog_source = new AP_ADC_AnalogSource( &adc,
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0);
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
pitot_analog_source = hal.analogin->channel(CONFIG_PITOT_SOURCE_ANALOG_PIN, CONFIG_PITOT_SCALING);
#endif
vcc_pin = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC);
batt_volt_pin = hal.analogin->channel(g.battery_volt_pin);
batt_curr_pin = hal.analogin->channel(g.battery_curr_pin);
airspeed.init(pitot_analog_source);
init_ardupilot();
}
void loop()
{
// We want this to execute at 50Hz, but synchronised with the gyro/accel
uint16_t num_samples = ins.num_samples_available();
if (num_samples >= 1) {
delta_ms_fast_loop = millis() - fast_loopTimer_ms;
load = (float)(fast_loopTimeStamp_ms - fast_loopTimer_ms)/delta_ms_fast_loop;
G_Dt = (float)delta_ms_fast_loop / 1000.f;
fast_loopTimer_ms = millis();
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
// Execute the medium loop
// -----------------------
medium_loop();
counter_one_herz++;
if(counter_one_herz == 50) {
one_second_loop();
counter_one_herz = 0;
}
if (millis() - perf_mon_timer > 20000) {
if (mainLoop_count != 0) {
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
resetPerfData();
}
}
fast_loopTimeStamp_ms = millis();
} else if (millis() - fast_loopTimeStamp_ms < 19) {
// less than 19ms has passed. We have at least one millisecond
// of free time. The most useful thing to do with that time is
// to accumulate some sensor readings, specifically the
// compass, which is often very noisy but is not interrupt
// driven, so it can't accumulate readings by itself
if (g.compass_enabled) {
compass.accumulate();
}
}
}
// Main loop 50Hz
static void fast_loop()
{
// This is the fast loop - we want it to execute at 50Hz if possible
// -----------------------------------------------------------------
if (delta_ms_fast_loop > G_Dt_max)
G_Dt_max = delta_ms_fast_loop;
// Read radio
// ----------
read_radio();
// try to send any deferred messages if the serial port now has
// some space available
gcs_send_message(MSG_RETRY_DEFERRED);
// check for loss of control signal failsafe condition
// ------------------------------------
check_short_failsafe();
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before AHRS update
gcs_update();
#endif
ahrs.update();
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_IMU)
Log_Write_IMU();
// inertial navigation
// ------------------
#if INERTIAL_NAVIGATION == ENABLED
// TODO: implement inertial nav function
inertialNavigation();
#endif
// custom code/exceptions for flight modes
// calculates roll, pitch and yaw demands from navigation demands
// --------------------------------------------------------------
update_current_flight_mode();
// apply desired roll, pitch and yaw to the plane
// ----------------------------------------------
if (control_mode > MANUAL)
stabilize();
// write out the servo PWM values
// ------------------------------
set_servos();
gcs_update();
gcs_data_stream_send();
}
static void medium_loop()
{
#if MOUNT == ENABLED
camera_mount.update_mount_position();
#endif
#if MOUNT2 == ENABLED
camera_mount2.update_mount_position();
#endif
#if CAMERA == ENABLED
camera.trigger_pic_cleanup();
#endif
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS
//-------------------------------
case 0:
medium_loopCounter++;
update_GPS();
calc_gndspeed_undershoot();
if (g.compass_enabled && compass.read()) {
ahrs.set_compass(&compass);
compass.null_offsets();
if (g.log_bitmask & MASK_LOG_COMPASS) {
Log_Write_Compass();
}
} else {
ahrs.set_compass(NULL);
}
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
// Read 6-position switch on radio
// -------------------------------
read_control_switch();
// calculate the plane's desired bearing
// -------------------------------------
navigate();
break;
// command processing
//------------------------------
case 2:
medium_loopCounter++;
// Read Airspeed
// -------------
if (airspeed.enabled()) {
read_airspeed();
}
read_receiver_rssi();
// Read altitude from sensors
// ------------------
update_alt();
// altitude smoothing
// ------------------
if (control_mode != FLY_BY_WIRE_B)
calc_altitude_error();
// perform next command
// --------------------
update_commands();
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST))
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
if (g.log_bitmask & MASK_LOG_GPS)
Log_Write_GPS();
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
delta_ms_medium_loop = millis() - medium_loopTimer_ms;
medium_loopTimer_ms = millis();
if (g.battery_monitoring != 0) {
read_battery();
}
slow_loop();
#if OBC_FAILSAFE == ENABLED
// perform OBC failsafe checks
obc.check(OBC_MODE(control_mode),
last_heartbeat_ms,
g_gps ? g_gps->last_fix_time : 0);
#endif
break;
}
}
static void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter) {
case 0:
slow_loopCounter++;
check_long_failsafe();
superslow_loopCounter++;
if(superslow_loopCounter >=200) {
// 200 = Execute every minute
if(g.compass_enabled) {
compass.save_offsets();
}
superslow_loopCounter = 0;
}
break;
case 1:
slow_loopCounter++;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11);
#else
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
#endif
enable_aux_servos();
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
#if MOUNT2 == ENABLED
camera_mount2.update_mount_type();
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter
check_usb_mux();
break;
}
}
static void one_second_loop()
{
if (g.log_bitmask & MASK_LOG_CURRENT)
Log_Write_Current();
// send a heartbeat
gcs_send_message(MSG_HEARTBEAT);
}
static void update_GPS(void)
{
g_gps->update();
update_GPS_light();
// get position from AHRS
have_position = ahrs.get_position(&current_loc);
if (g_gps->new_data && g_gps->status() >= GPS::GPS_OK_FIX_3D) {
g_gps->new_data = false;
// for performance
// ---------------
gps_fix_count++;
if(ground_start_count > 1) {
ground_start_count--;
ground_start_avg += g_gps->ground_speed;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
} else {
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT) {
startup_ground();
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
init_home();
} else if (ENABLE_AIR_START == 0) {
init_home();
}
if (g.compass_enabled) {
// Set compass declination automatically
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
}
ground_start_count = 0;
}
}
// see if we've breached the geo-fence
geofence_check(false);
}
}
static void update_current_flight_mode(void)
{
if(control_mode == AUTO) {
crash_checker();
switch(nav_command_ID) {
case MAV_CMD_NAV_TAKEOFF:
if (hold_course_cd == -1) {
// we don't yet have a heading to hold - just level
// the wings until we get up enough speed to get a GPS heading
nav_roll_cd = 0;
} else {
calc_nav_roll();
// during takeoff use the level flight roll limit to
// prevent large course corrections
nav_roll_cd = constrain_int32(nav_roll_cd, -g.level_roll_limit*100UL, g.level_roll_limit*100UL);
}
if (alt_control_airspeed()) {
calc_nav_pitch();
if (nav_pitch_cd < takeoff_pitch_cd)
nav_pitch_cd = takeoff_pitch_cd;
} else {
nav_pitch_cd = (g_gps->ground_speed / (float)g.airspeed_cruise_cm) * takeoff_pitch_cd;
nav_pitch_cd = constrain_int32(nav_pitch_cd, 500, takeoff_pitch_cd);
}
#if APM_CONTROL == DISABLED
float aspeed;
if (ahrs.airspeed_estimate(&aspeed)) {
// don't use a pitch/roll integrators during takeoff if we are
// below minimum speed
if (aspeed < g.flybywire_airspeed_min) {
g.pidServoPitch.reset_I();
g.pidServoRoll.reset_I();
}
}
#endif
// max throttle for takeoff
g.channel_throttle.servo_out = g.throttle_max;
break;
case MAV_CMD_NAV_LAND:
calc_nav_roll();
if (land_complete) {
// during final approach constrain roll to the range
// allowed for level flight
nav_roll_cd = constrain_int32(nav_roll_cd, -g.level_roll_limit*100UL, g.level_roll_limit*100UL);
// hold pitch constant in final approach
nav_pitch_cd = g.land_pitch_cd;
} else {
calc_nav_pitch();
if (!alt_control_airspeed()) {
// when not under airspeed control, don't allow
// down pitch in landing
nav_pitch_cd = constrain_int32(nav_pitch_cd, 0, nav_pitch_cd);
}
}
calc_throttle();
if (land_complete) {
// we are in the final stage of a landing - force
// zero throttle
g.channel_throttle.servo_out = 0;
}
break;
default:
// we are doing normal AUTO flight, the special cases
// are for takeoff and landing
hold_course_cd = -1;
land_complete = false;
calc_nav_roll();
calc_nav_pitch();
calc_throttle();
break;
}
}else{
// hold_course is only used in takeoff and landing
hold_course_cd = -1;
switch(control_mode) {
case RTL:
case LOITER:
case GUIDED:
crash_checker();
calc_nav_roll();
calc_nav_pitch();
calc_throttle();
break;
case TRAINING: {
training_manual_roll = false;
training_manual_pitch = false;
// if the roll is past the set roll limit, then
// we set target roll to the limit
if (ahrs.roll_sensor >= g.roll_limit_cd) {
nav_roll_cd = g.roll_limit_cd;
} else if (ahrs.roll_sensor <= -g.roll_limit_cd) {
nav_roll_cd = -g.roll_limit_cd;
} else {
training_manual_roll = true;
nav_roll_cd = 0;
}
// if the pitch is past the set pitch limits, then
// we set target pitch to the limit
if (ahrs.pitch_sensor >= g.pitch_limit_max_cd) {
nav_pitch_cd = g.pitch_limit_max_cd;
} else if (ahrs.pitch_sensor <= g.pitch_limit_min_cd) {
nav_pitch_cd = g.pitch_limit_min_cd;
} else {
training_manual_pitch = true;
nav_pitch_cd = 0;
}
if (inverted_flight) {
nav_pitch_cd = -nav_pitch_cd;
}
break;
}
case FLY_BY_WIRE_A: {
// set nav_roll and nav_pitch using sticks
nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd;
float pitch_input = g.channel_pitch.norm_input();
if (pitch_input > 0) {
nav_pitch_cd = pitch_input * g.pitch_limit_max_cd;
} else {
nav_pitch_cd = -(pitch_input * g.pitch_limit_min_cd);
}
nav_pitch_cd = constrain_int32(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get());
if (inverted_flight) {
nav_pitch_cd = -nav_pitch_cd;
}
break;
}
case FLY_BY_WIRE_B: {
static float last_elevator_input;
// Substitute stick inputs for Navigation control output
// We use g.pitch_limit_min because its magnitude is
// normally greater than g.pitch_limit_max
// Thanks to Yury MonZon for the altitude limit code!
nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd;
float elevator_input;
elevator_input = g.channel_pitch.norm_input();
if (g.flybywire_elev_reverse) {
elevator_input = -elevator_input;
}
target_altitude_cm += g.flybywire_climb_rate * elevator_input * delta_ms_fast_loop * 0.1f;
if (elevator_input == 0.0f && last_elevator_input != 0.0f) {
// the user has just released the elevator, lock in
// the current altitude
target_altitude_cm = current_loc.alt;
}
// check for FBWB altitude limit
if (g.FBWB_min_altitude_cm != 0 && target_altitude_cm < home.alt + g.FBWB_min_altitude_cm) {
target_altitude_cm = home.alt + g.FBWB_min_altitude_cm;
}
altitude_error_cm = target_altitude_cm - adjusted_altitude_cm();
last_elevator_input = elevator_input;
calc_throttle();
calc_nav_pitch();
}
break;
case STABILIZE:
nav_roll_cd = 0;
nav_pitch_cd = 0;
// throttle is passthrough
break;
case CIRCLE:
// we have no GPS installed and have lost radio contact
// or we just want to fly around in a gentle circle w/o GPS,
// holding altitude at the altitude we set when we
// switched into the mode
nav_roll_cd = g.roll_limit_cd / 3;
calc_nav_pitch();
calc_throttle();
break;
case MANUAL:
// servo_out is for Sim control only
// ---------------------------------
g.channel_roll.servo_out = g.channel_roll.pwm_to_angle();
g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle();
g.channel_rudder.servo_out = g.channel_rudder.pwm_to_angle();
break;
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
case INITIALISING:
case AUTO:
// handled elsewhere
break;
}
}
}
static void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
// distance and bearing calcs only
switch(control_mode) {
case AUTO:
verify_commands();
break;
case LOITER:
case RTL:
case GUIDED:
update_loiter();
break;
case MANUAL:
case STABILIZE:
case TRAINING:
case INITIALISING:
case FLY_BY_WIRE_A:
case FLY_BY_WIRE_B:
case CIRCLE:
// nothing to do
break;
}
}
static void update_alt()
{
// this function is in place to potentially add a sonar sensor in the future
//altitude_sensor = BARO;
if (barometer.healthy) {
current_loc.alt = (1 - g.altitude_mix) * g_gps->altitude; // alt_MSL centimeters (meters * 100)
current_loc.alt += g.altitude_mix * (read_barometer() + home.alt);
} else if (g_gps->status() >= GPS::GPS_OK_FIX_3D) {
current_loc.alt = g_gps->altitude; // alt_MSL centimeters (meters * 100)
}
geofence_check(true);
// Calculate new climb rate
//if(medium_loopCounter == 0 && slow_loopCounter == 0)
// add_altitude_data(millis() / 100, g_gps->altitude / 10);
}
AP_HAL_MAIN();