ardupilot/libraries/AP_Math/vector2.cpp
Andrew Tridgell 737f0305ef AP_Math: implement vector2 cross product
useful in DCM for faster yaw correction
2013-05-05 13:47:51 +10:00

149 lines
3.9 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* vector3.cpp
* Copyright (C) Andrew Tridgell 2012
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Math.h"
template <typename T>
float Vector2<T>::length(void) const
{
return pythagorous2(x, y);
}
// dot product
template <typename T>
T Vector2<T>::operator *(const Vector2<T> &v) const
{
return x*v.x + y*v.y;
}
// cross product
template <typename T>
T Vector2<T>::operator %(const Vector2<T> &v) const
{
return x*v.y - y*v.x;
}
template <typename T>
Vector2<T> &Vector2<T>::operator *=(const T num)
{
x*=num; y*=num;
return *this;
}
template <typename T>
Vector2<T> &Vector2<T>::operator /=(const T num)
{
x /= num; y /= num;
return *this;
}
template <typename T>
Vector2<T> &Vector2<T>::operator -=(const Vector2<T> &v)
{
x -= v.x; y -= v.y;
return *this;
}
template <typename T>
bool Vector2<T>::is_nan(void) const
{
return isnan(x) || isnan(y);
}
template <typename T>
bool Vector2<T>::is_inf(void) const
{
return isinf(x) || isinf(y);
}
template <typename T>
Vector2<T> &Vector2<T>::operator +=(const Vector2<T> &v)
{
x+=v.x; y+=v.y;
return *this;
}
template <typename T>
Vector2<T> Vector2<T>::operator /(const T num) const
{
return Vector2<T>(x/num, y/num);
}
template <typename T>
Vector2<T> Vector2<T>::operator *(const T num) const
{
return Vector2<T>(x*num, y*num);
}
template <typename T>
Vector2<T> Vector2<T>::operator -(const Vector2<T> &v) const
{
return Vector2<T>(x-v.x, y-v.y);
}
template <typename T>
Vector2<T> Vector2<T>::operator +(const Vector2<T> &v) const
{
return Vector2<T>(x+v.x, y+v.y);
}
template <typename T>
Vector2<T> Vector2<T>::operator -(void) const
{
return Vector2<T>(-x,-y);
}
template <typename T>
bool Vector2<T>::operator ==(const Vector2<T> &v) const
{
return (x==v.x && y==v.y);
}
template <typename T>
bool Vector2<T>::operator !=(const Vector2<T> &v) const
{
return (x!=v.x && y!=v.y);
}
template <typename T>
float Vector2<T>::angle(const Vector2<T> &v2) const
{
return acosf(((*this)*v2) / (this->length()*v2.length()));
}
// only define for float
template float Vector2<float>::length(void) const;
template float Vector2<float>::operator *(const Vector2<float> &v) const;
template float Vector2<float>::operator %(const Vector2<float> &v) const;
template Vector2<float> &Vector2<float>::operator *=(const float num);
template Vector2<float> &Vector2<float>::operator /=(const float num);
template Vector2<float> &Vector2<float>::operator -=(const Vector2<float> &v);
template Vector2<float> &Vector2<float>::operator +=(const Vector2<float> &v);
template Vector2<float> Vector2<float>::operator /(const float num) const;
template Vector2<float> Vector2<float>::operator *(const float num) const;
template Vector2<float> Vector2<float>::operator +(const Vector2<float> &v) const;
template Vector2<float> Vector2<float>::operator -(const Vector2<float> &v) const;
template Vector2<float> Vector2<float>::operator -(void) const;
template bool Vector2<float>::operator ==(const Vector2<float> &v) const;
template bool Vector2<float>::operator !=(const Vector2<float> &v) const;
template bool Vector2<float>::is_nan(void) const;
template bool Vector2<float>::is_inf(void) const;
template float Vector2<float>::angle(const Vector2<float> &v) const;