ardupilot/libraries/AP_InertialSensor/AP_InertialSensor.h
Andrew Tridgell 58d3729d16 AP_InertialSensor: fixed default health functions
this fixes INS on APM1. Thanks to Mike McCauley for noticing this!
2014-01-22 22:08:28 +11:00

227 lines
8.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AP_INERTIAL_SENSOR_H__
#define __AP_INERTIAL_SENSOR_H__
// Gyro and Accelerometer calibration criteria
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f
/**
maximum number of INS instances available on this platform. If more
than 1 then redundent sensors may be available
*/
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#define INS_MAX_INSTANCES 2
#else
#define INS_MAX_INSTANCES 1
#endif
#include <stdint.h>
#include <AP_HAL.h>
#include <AP_Math.h>
#include "AP_InertialSensor_UserInteract.h"
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units.
*
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
*/
class AP_InertialSensor
{
public:
AP_InertialSensor();
enum Start_style {
COLD_START = 0,
WARM_START
};
// the rate that updates will be available to the application
enum Sample_rate {
RATE_50HZ,
RATE_100HZ,
RATE_200HZ
};
/// Perform startup initialisation.
///
/// Called to initialise the state of the IMU.
///
/// For COLD_START, implementations using real sensors can assume
/// that the airframe is stationary and nominally oriented.
///
/// For WARM_START, no assumptions should be made about the
/// orientation or motion of the airframe. Calibration should be
/// as for the previous COLD_START call.
///
/// @param style The initialisation startup style.
///
virtual void init( Start_style style,
Sample_rate sample_rate);
/// Perform cold startup initialisation for just the accelerometers.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work.
///
virtual void init_accel();
#if !defined( __AVR_ATmega1280__ )
// perform accelerometer calibration including providing user instructions
// and feedback
virtual bool calibrate_accel(AP_InertialSensor_UserInteract *interact,
float& trim_roll,
float& trim_pitch);
#endif
/// calibrated - returns true if the accelerometers have been calibrated
///
/// @note this should not be called while flying because it reads from the eeprom which can be slow
///
bool calibrated();
/// Perform cold-start initialisation for just the gyros.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
virtual void init_gyro(void);
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; }
const Vector3f &get_gyro(void) const { return get_gyro(_get_primary_gyro()); }
virtual void set_gyro(const Vector3f &gyro) {}
// set gyro offsets in radians/sec
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; }
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_get_primary_gyro()); }
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; }
const Vector3f &get_accel(void) const { return get_accel(_get_primary_accel()); }
virtual void set_accel(const Vector3f &accel) {}
// multi-device interface
virtual bool get_gyro_health(uint8_t instance) const { return true; }
bool get_gyro_health(void) const { return get_gyro_health(_get_primary_gyro()); }
virtual uint8_t get_gyro_count(void) const { return 1; };
virtual bool get_accel_health(uint8_t instance) const { return true; }
bool get_accel_health(void) const { return get_accel_health(_get_primary_accel()); }
virtual uint8_t get_accel_count(void) const { return 1; };
// get accel offsets in m/s/s
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; }
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_get_primary_accel()); }
// get accel scale
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; }
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_get_primary_accel()); }
/* Update the sensor data, so that getters are nonblocking.
* Returns a bool of whether data was updated or not.
*/
virtual bool update() = 0;
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
virtual float get_delta_time() = 0;
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
virtual float get_gyro_drift_rate(void) = 0;
// wait for a sample to be available, with timeout in milliseconds
virtual bool wait_for_sample(uint16_t timeout_ms) = 0;
// class level parameters
static const struct AP_Param::GroupInfo var_info[];
// set overall board orientation
void set_board_orientation(enum Rotation orientation) {
_board_orientation = orientation;
}
// override default filter frequency
void set_default_filter(float filter_hz) {
if (!_mpu6000_filter.load()) {
_mpu6000_filter.set(filter_hz);
}
}
virtual uint16_t error_count(void) const { return 0; }
virtual bool healthy(void) const { return get_gyro_health() && get_accel_health(); }
protected:
virtual uint8_t _get_primary_gyro(void) const { return 0; }
virtual uint8_t _get_primary_accel(void) const { return 0; }
// sensor specific init to be overwritten by descendant classes
virtual uint16_t _init_sensor( Sample_rate sample_rate ) = 0;
// no-save implementations of accel and gyro initialisation routines
virtual void _init_accel();
virtual void _init_gyro();
#if !defined( __AVR_ATmega1280__ )
// Calibration routines borrowed from Rolfe Schmidt
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
// _calibrate_accel - perform low level accel calibration
virtual bool _calibrate_accel(Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale);
virtual void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]);
virtual void _calibrate_reset_matrices(float dS[6], float JS[6][6]);
virtual void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]);
virtual void _calculate_trim(Vector3f accel_sample, float& trim_roll, float& trim_pitch);
#endif
// save parameters to eeprom
void _save_parameters();
// Most recent accelerometer reading obtained by ::update
Vector3f _accel[INS_MAX_INSTANCES];
// previous accelerometer reading obtained by ::update
Vector3f _previous_accel[INS_MAX_INSTANCES];
// Most recent gyro reading obtained by ::update
Vector3f _gyro[INS_MAX_INSTANCES];
// product id
AP_Int16 _product_id;
// accelerometer scaling and offsets
AP_Vector3f _accel_scale[INS_MAX_INSTANCES];
AP_Vector3f _accel_offset[INS_MAX_INSTANCES];
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES];
// filtering frequency (0 means default)
AP_Int8 _mpu6000_filter;
// board orientation from AHRS
enum Rotation _board_orientation;
};
#include "AP_InertialSensor_Oilpan.h"
#include "AP_InertialSensor_MPU6000.h"
#include "AP_InertialSensor_HIL.h"
#include "AP_InertialSensor_PX4.h"
#include "AP_InertialSensor_UserInteract_Stream.h"
#include "AP_InertialSensor_UserInteract_MAVLink.h"
#include "AP_InertialSensor_Flymaple.h"
#include "AP_InertialSensor_L3G4200D.h"
#endif // __AP_INERTIAL_SENSOR_H__