ardupilot/AntennaTracker/system.cpp

265 lines
6.5 KiB
C++

#include "Tracker.h"
// mission storage
static const StorageAccess wp_storage(StorageManager::StorageMission);
void Tracker::init_ardupilot()
{
// initialise stats module
stats.init();
BoardConfig.init();
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
can_mgr.init();
#endif
// initialise notify
notify.init();
AP_Notify::flags.pre_arm_check = true;
AP_Notify::flags.pre_arm_gps_check = true;
// initialise battery
battery.init();
// init baro before we start the GCS, so that the CLI baro test works
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.init();
// setup telem slots with serial ports
gcs().setup_uarts();
// update_send so that if the first packet we receive happens to
// be an arm message we don't trigger an internal error when we
// try to initialise stream rates in the main loop.
gcs().update_send();
#if HAL_LOGGING_ENABLED
log_init();
#endif
#if AP_SCRIPTING_ENABLED
scripting.init();
#endif // AP_SCRIPTING_ENABLED
// initialise compass
AP::compass().set_log_bit(MASK_LOG_COMPASS);
AP::compass().init();
// GPS Initialization
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init(serial_manager);
ahrs.init();
ahrs.set_fly_forward(false);
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
barometer.calibrate();
#if HAL_LOGGING_ENABLED
// initialise AP_Logger library
logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&tracker, &Tracker::Log_Write_Vehicle_Startup_Messages, void));
#endif
// initialise rc channels including setting mode
rc().convert_options(RC_Channel::AUX_FUNC::ARMDISARM_UNUSED, RC_Channel::AUX_FUNC::ARMDISARM);
rc().init();
// initialise servos
init_servos();
// use given start positions - useful for indoor testing, and
// while waiting for GPS lock
// sanity check location
if (fabsf(g.start_latitude) <= 90.0f && fabsf(g.start_longitude) <= 180.0f) {
current_loc.lat = g.start_latitude * 1.0e7f;
current_loc.lng = g.start_longitude * 1.0e7f;
} else {
gcs().send_text(MAV_SEVERITY_NOTICE, "Ignoring invalid START_LATITUDE or START_LONGITUDE parameter");
}
// see if EEPROM has a default location as well
if (current_loc.lat == 0 && current_loc.lng == 0) {
get_home_eeprom(current_loc);
}
hal.scheduler->delay(1000); // Why????
Mode *newmode = mode_from_mode_num((Mode::Number)g.initial_mode.get());
if (newmode == nullptr) {
newmode = &mode_manual;
}
set_mode(*newmode, ModeReason::STARTUP);
if (g.startup_delay > 0) {
// arm servos with trim value to allow them to start up (required
// for some servos)
prepare_servos();
}
}
/*
fetch HOME from EEPROM
*/
bool Tracker::get_home_eeprom(Location &loc) const
{
// Find out proper location in memory by using the start_byte position + the index
// --------------------------------------------------------------------------------
if (g.command_total.get() == 0) {
return false;
}
// read WP position
loc = {
int32_t(wp_storage.read_uint32(5)),
int32_t(wp_storage.read_uint32(9)),
int32_t(wp_storage.read_uint32(1)),
Location::AltFrame::ABSOLUTE
};
return true;
}
bool Tracker::set_home_eeprom(const Location &temp)
{
wp_storage.write_byte(0, 0);
wp_storage.write_uint32(1, temp.alt);
wp_storage.write_uint32(5, temp.lat);
wp_storage.write_uint32(9, temp.lng);
// Now have a home location in EEPROM
g.command_total.set_and_save(1); // At most 1 entry for HOME
return true;
}
bool Tracker::set_home(const Location &temp)
{
// check EKF origin has been set
Location ekf_origin;
if (ahrs.get_origin(ekf_origin)) {
if (!ahrs.set_home(temp)) {
return false;
}
}
if (!set_home_eeprom(temp)) {
return false;
}
current_loc = temp;
return true;
}
void Tracker::arm_servos()
{
hal.util->set_soft_armed(true);
#if HAL_LOGGING_ENABLED
logger.set_vehicle_armed(true);
#endif
}
void Tracker::disarm_servos()
{
hal.util->set_soft_armed(false);
#if HAL_LOGGING_ENABLED
logger.set_vehicle_armed(false);
#endif
}
/*
setup servos to trim value after initialising
*/
void Tracker::prepare_servos()
{
start_time_ms = AP_HAL::millis();
SRV_Channels::set_output_limit(SRV_Channel::k_tracker_yaw, SRV_Channel::Limit::TRIM);
SRV_Channels::set_output_limit(SRV_Channel::k_tracker_pitch, SRV_Channel::Limit::TRIM);
SRV_Channels::calc_pwm();
SRV_Channels::output_ch_all();
}
void Tracker::set_mode(Mode &newmode, const ModeReason reason)
{
control_mode_reason = reason;
if (mode == &newmode) {
// don't switch modes if we are already in the correct mode.
return;
}
mode = &newmode;
if (mode->requires_armed_servos()) {
arm_servos();
} else {
disarm_servos();
}
#if HAL_LOGGING_ENABLED
// log mode change
logger.Write_Mode((uint8_t)mode->number(), reason);
#endif
gcs().send_message(MSG_HEARTBEAT);
nav_status.bearing = ahrs.yaw_sensor * 0.01f;
}
bool Tracker::set_mode(const uint8_t new_mode, const ModeReason reason)
{
Mode *fred = nullptr;
switch ((Mode::Number)new_mode) {
case Mode::Number::INITIALISING:
return false;
case Mode::Number::AUTO:
fred = &mode_auto;
break;
case Mode::Number::MANUAL:
fred = &mode_manual;
break;
case Mode::Number::SCAN:
fred = &mode_scan;
break;
case Mode::Number::SERVOTEST:
fred = &mode_servotest;
break;
case Mode::Number::STOP:
fred = &mode_stop;
break;
case Mode::Number::GUIDED:
fred = &mode_guided;
break;
}
if (fred == nullptr) {
return false;
}
set_mode(*fred, reason);
return true;
}
#if HAL_LOGGING_ENABLED
/*
should we log a message type now?
*/
bool Tracker::should_log(uint32_t mask)
{
if (!logger.should_log(mask)) {
return false;
}
return true;
}
#endif
#include <AP_AdvancedFailsafe/AP_AdvancedFailsafe.h>
#include <AP_Avoidance/AP_Avoidance.h>
#include <AP_ADSB/AP_ADSB.h>
#if AP_ADVANCEDFAILSAFE_ENABLED
// dummy method to avoid linking AFS
bool AP_AdvancedFailsafe::gcs_terminate(bool should_terminate, const char *reason) {return false;}
AP_AdvancedFailsafe *AP::advancedfailsafe() { return nullptr; }
#endif // AP_ADVANCEDFAILSAFE_ENABLED
#if HAL_ADSB_ENABLED
// dummy method to avoid linking AP_Avoidance
AP_Avoidance *AP::ap_avoidance() { return nullptr; }
#endif