mirror of https://github.com/ArduPilot/ardupilot
169 lines
4.4 KiB
C++
169 lines
4.4 KiB
C++
#include "AP_Math.h"
|
|
#include <float.h>
|
|
|
|
// a varient of asin() that checks the input ranges and ensures a
|
|
// valid angle as output. If nan is given as input then zero is
|
|
// returned.
|
|
float safe_asin(float v)
|
|
{
|
|
if (isnan(v)) {
|
|
return 0.0f;
|
|
}
|
|
if (v >= 1.0f) {
|
|
return PI/2;
|
|
}
|
|
if (v <= -1.0f) {
|
|
return -PI/2;
|
|
}
|
|
return asinf(v);
|
|
}
|
|
|
|
// a varient of sqrt() that checks the input ranges and ensures a
|
|
// valid value as output. If a negative number is given then 0 is
|
|
// returned. The reasoning is that a negative number for sqrt() in our
|
|
// code is usually caused by small numerical rounding errors, so the
|
|
// real input should have been zero
|
|
float safe_sqrt(float v)
|
|
{
|
|
float ret = sqrtf(v);
|
|
if (isnan(ret)) {
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// a faster varient of atan. accurate to 6 decimal places for values between -1 ~ 1 but then diverges quickly
|
|
float fast_atan(float v)
|
|
{
|
|
float v2 = v*v;
|
|
return (v*(1.6867629106f + v2*0.4378497304f)/(1.6867633134f + v2));
|
|
}
|
|
|
|
#if HAL_CPU_CLASS < HAL_CPU_CLASS_75 || CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
#define FAST_ATAN2_PIBY2_FLOAT 1.5707963f
|
|
// fast_atan2 - faster version of atan2
|
|
// 126 us on AVR cpu vs 199 for regular atan2
|
|
// absolute error is < 0.005 radians or 0.28 degrees
|
|
// origin source: https://gist.github.com/volkansalma/2972237/raw/
|
|
float fast_atan2(float y, float x)
|
|
{
|
|
if (x == 0.0f) {
|
|
if (y > 0.0f) {
|
|
return FAST_ATAN2_PIBY2_FLOAT;
|
|
}
|
|
if (y == 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
return -FAST_ATAN2_PIBY2_FLOAT;
|
|
}
|
|
float atan;
|
|
float z = y/x;
|
|
if (fabs( z ) < 1.0f) {
|
|
atan = z / (1.0f + 0.28f * z * z);
|
|
if (x < 0.0f) {
|
|
if (y < 0.0f) {
|
|
return atan - PI;
|
|
}
|
|
return atan + PI;
|
|
}
|
|
} else {
|
|
atan = FAST_ATAN2_PIBY2_FLOAT - (z / (z * z + 0.28f));
|
|
if (y < 0.0f) {
|
|
return atan - PI;
|
|
}
|
|
}
|
|
return atan;
|
|
}
|
|
#else
|
|
float fast_atan2(float y, float x)
|
|
{
|
|
return atan2f(y,x);
|
|
}
|
|
#endif
|
|
|
|
#if ROTATION_COMBINATION_SUPPORT
|
|
// find a rotation that is the combination of two other
|
|
// rotations. This is used to allow us to add an overall board
|
|
// rotation to an existing rotation of a sensor such as the compass
|
|
// Note that this relies the set of rotations being complete. The
|
|
// optional 'found' parameter is for the test suite to ensure that it is.
|
|
enum Rotation rotation_combination(enum Rotation r1, enum Rotation r2, bool *found)
|
|
{
|
|
Vector3f tv1, tv2;
|
|
enum Rotation r;
|
|
tv1(1,2,3);
|
|
tv1.rotate(r1);
|
|
tv1.rotate(r2);
|
|
|
|
for (r=ROTATION_NONE; r<ROTATION_MAX;
|
|
r = (enum Rotation)((uint8_t)r+1)) {
|
|
Vector3f diff;
|
|
tv2(1,2,3);
|
|
tv2.rotate(r);
|
|
diff = tv1 - tv2;
|
|
if (diff.length() < 1.0e-6f) {
|
|
// we found a match
|
|
if (found) {
|
|
*found = true;
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
// we found no matching rotation. Someone has edited the
|
|
// rotations list and broken its completeness property ...
|
|
if (found) {
|
|
*found = false;
|
|
}
|
|
return ROTATION_NONE;
|
|
}
|
|
#endif
|
|
|
|
// constrain a value
|
|
float constrain_float(float amt, float low, float high)
|
|
{
|
|
// the check for NaN as a float prevents propogation of
|
|
// floating point errors through any function that uses
|
|
// constrain_float(). The normal float semantics already handle -Inf
|
|
// and +Inf
|
|
if (isnan(amt)) {
|
|
return (low+high)*0.5f;
|
|
}
|
|
return ((amt)<(low)?(low):((amt)>(high)?(high):(amt)));
|
|
}
|
|
|
|
// constrain a int16_t value
|
|
int16_t constrain_int16(int16_t amt, int16_t low, int16_t high) {
|
|
return ((amt)<(low)?(low):((amt)>(high)?(high):(amt)));
|
|
}
|
|
|
|
// constrain a int32_t value
|
|
int32_t constrain_int32(int32_t amt, int32_t low, int32_t high) {
|
|
return ((amt)<(low)?(low):((amt)>(high)?(high):(amt)));
|
|
}
|
|
|
|
// degrees -> radians
|
|
float radians(float deg) {
|
|
return deg * DEG_TO_RAD;
|
|
}
|
|
|
|
// radians -> degrees
|
|
float degrees(float rad) {
|
|
return rad * RAD_TO_DEG;
|
|
}
|
|
|
|
// square
|
|
float sq(float v) {
|
|
return v*v;
|
|
}
|
|
|
|
// 2D vector length
|
|
float pythagorous2(float a, float b) {
|
|
return sqrtf(sq(a)+sq(b));
|
|
}
|
|
|
|
// 3D vector length
|
|
float pythagorous3(float a, float b, float c) {
|
|
return sqrtf(sq(a)+sq(b)+sq(c));
|
|
}
|