mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 07:08:29 -04:00
e2ef0bd36e
new dsp peak detection algorithm add DSP sketch with frequency ascii art tool to generate gyro data frames from batch sampled DF logs add generated data from real Y6B flight allow fft_start() to use ObjectBuffer<float> for lock-free access allow ObjectBuffer to be resized
332 lines
13 KiB
C++
332 lines
13 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Code by Andy Piper
|
|
*/
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AP_HAL.h"
|
|
#include "DSP.h"
|
|
|
|
#if HAL_WITH_DSP
|
|
|
|
using namespace AP_HAL;
|
|
|
|
extern const AP_HAL::HAL &hal;
|
|
|
|
#define SQRT_2_3 0.816496580927726f
|
|
#define SQRT_6 2.449489742783178f
|
|
|
|
DSP::FFTWindowState::FFTWindowState(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics)
|
|
: _window_size(window_size),
|
|
_bin_count(window_size / 2),
|
|
_bin_resolution((float)sample_rate / (float)window_size),
|
|
_harmonics(harmonics)
|
|
{
|
|
// includes DC ad Nyquist components and needs to be large enough for intermediate steps
|
|
_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * (window_size), DSP_MEM_REGION);
|
|
_derivative_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * (_bin_count + 1), DSP_MEM_REGION);
|
|
_hanning_window = (float*)hal.util->malloc_type(sizeof(float) * (window_size), DSP_MEM_REGION);
|
|
// allocate workspace, including Nyquist component
|
|
_rfft_data = (float*)hal.util->malloc_type(sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
|
|
|
|
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) {
|
|
hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count), DSP_MEM_REGION);
|
|
hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
|
|
|
|
_freq_bins = nullptr;
|
|
_derivative_freq_bins = nullptr;
|
|
_hanning_window = nullptr;
|
|
_rfft_data = nullptr;
|
|
return;
|
|
}
|
|
|
|
// create the Hanning window
|
|
// https://holometer.fnal.gov/GH_FFT.pdf - equation 19
|
|
for (uint16_t i = 0; i < window_size; i++) {
|
|
_hanning_window[i] = (0.5f - 0.5f * cosf(2.0f * M_PI * i / ((float)window_size - 1)));
|
|
_window_scale += _hanning_window[i];
|
|
}
|
|
// Calculate the inverse of the Effective Noise Bandwidth
|
|
_window_scale = 2.0f / sq(_window_scale);
|
|
}
|
|
|
|
DSP::FFTWindowState::~FFTWindowState()
|
|
{
|
|
hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
_freq_bins = nullptr;
|
|
hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count), DSP_MEM_REGION);
|
|
_derivative_freq_bins = nullptr;
|
|
hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
_hanning_window = nullptr;
|
|
hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
|
|
_rfft_data = nullptr;
|
|
}
|
|
|
|
// step 3: find the magnitudes of the complex data
|
|
void DSP::step_cmplx_mag(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff)
|
|
{
|
|
// fft->_freq_bins is populated with the complex magnitude values of the fft data
|
|
// find the maximum power in the range we are interested in
|
|
// in order to see a peak in the last bin we need to allow all the way up to the nyquist
|
|
const uint16_t smoothwidth = 1;
|
|
uint16_t bin_range = (MIN(end_bin + ((smoothwidth + 1) >> 1) + 2, fft->_bin_count) - start_bin) + 1;
|
|
// find the three highest peaks using a zero crossing algorithm
|
|
uint16_t peaks[MAX_TRACKED_PEAKS] {};
|
|
memset(fft->_peak_data, 0, sizeof(fft->_peak_data));
|
|
uint16_t numpeaks = find_peaks(&fft->_freq_bins[start_bin], bin_range, fft->_derivative_freq_bins, peaks, MAX_TRACKED_PEAKS, 0.0f, -1.0f, smoothwidth, 2);
|
|
//hal.console->printf("found %d peaks\n", numpeaks);
|
|
|
|
for (uint16_t i = 0; i < MAX_TRACKED_PEAKS; i++) {
|
|
fft->_peak_data[i]._bin = peaks[i] + start_bin;
|
|
}
|
|
|
|
uint16_t top = 0, bottom = 0;
|
|
fft->_peak_data[CENTER]._noise_width_hz = find_noise_width(fft, start_bin, end_bin, fft->_peak_data[CENTER]._bin, noise_att_cutoff, top, bottom);
|
|
if (numpeaks > 1) {
|
|
fft->_peak_data[LOWER_SHOULDER]._noise_width_hz = find_noise_width(fft, start_bin, end_bin, fft->_peak_data[LOWER_SHOULDER]._bin, noise_att_cutoff, top, bottom);
|
|
}
|
|
if (numpeaks > 2) {
|
|
fft->_peak_data[UPPER_SHOULDER]._noise_width_hz = find_noise_width(fft, start_bin, end_bin, fft->_peak_data[UPPER_SHOULDER]._bin, noise_att_cutoff, top, bottom);
|
|
}
|
|
|
|
// scale the power to account for the input window
|
|
vector_scale_float(fft->_freq_bins, fft->_window_scale, fft->_freq_bins, fft->_bin_count);
|
|
}
|
|
|
|
// calculate the noise width of a peak based on the input parameters
|
|
float DSP::find_noise_width(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, uint16_t max_energy_bin, float cutoff, uint16_t& peak_top, uint16_t& peak_bottom) const
|
|
{
|
|
// max_energy_bin is guaranteed to be between start_bin and end_bin
|
|
peak_top = end_bin;
|
|
peak_bottom = start_bin;
|
|
|
|
// calculate the width of the peak
|
|
float noise_width_hz = 1;
|
|
|
|
// -attenuation/2 dB point above the center bin
|
|
if (max_energy_bin < end_bin) {
|
|
for (uint16_t b = max_energy_bin + 1; b <= end_bin; b++) {
|
|
if (fft->_freq_bins[b] < fft->_freq_bins[max_energy_bin] * cutoff) {
|
|
// we assume that the 3dB point is in the middle of the final shoulder bin
|
|
noise_width_hz += (b - max_energy_bin - 0.5f);
|
|
peak_top = b;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// -attenuation/2 dB point below the center bin
|
|
if (max_energy_bin > start_bin) {
|
|
for (uint16_t b = max_energy_bin - 1; b >= start_bin; b--) {
|
|
if (fft->_freq_bins[b] < fft->_freq_bins[max_energy_bin] * cutoff) {
|
|
// we assume that the 3dB point is in the middle of the final shoulder bin
|
|
noise_width_hz += (max_energy_bin - b - 0.5f);
|
|
peak_bottom = b;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
noise_width_hz *= fft->_bin_resolution;
|
|
|
|
return noise_width_hz;
|
|
}
|
|
|
|
// step 4: find the bin with the highest energy and interpolate the required frequency
|
|
uint16_t DSP::step_calc_frequencies(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin)
|
|
{
|
|
fft->_peak_data[CENTER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[CENTER]._bin, end_bin);
|
|
fft->_peak_data[UPPER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[UPPER_SHOULDER]._bin, end_bin);
|
|
fft->_peak_data[LOWER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[LOWER_SHOULDER]._bin, end_bin);
|
|
|
|
return fft->_peak_data[CENTER]._bin;
|
|
}
|
|
|
|
// calculate a single frequency
|
|
uint16_t DSP::calc_frequency(FFTWindowState* fft, uint16_t start_bin, uint16_t peak_bin, uint16_t end_bin)
|
|
{
|
|
if (peak_bin == 0 || is_zero(fft->_freq_bins[peak_bin])) {
|
|
return start_bin * fft->_bin_resolution;
|
|
}
|
|
|
|
peak_bin = constrain_int16(peak_bin, start_bin, end_bin);
|
|
|
|
// It turns out that Jain is pretty good and works with only magnitudes, but Candan is significantly better
|
|
// if you have access to the complex values and Quinn is a little better still. Quinn is computationally
|
|
// more expensive, but compared to the overall FFT cost seems worth it.
|
|
return (peak_bin + calculate_quinns_second_estimator(fft, fft->_rfft_data, peak_bin)) * fft->_bin_resolution;
|
|
}
|
|
|
|
// Interpolate center frequency using https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/
|
|
float DSP::calculate_quinns_second_estimator(const FFTWindowState* fft, const float* complex_fft, uint16_t k_max) const
|
|
{
|
|
if (k_max <= 1 || k_max >= fft->_bin_count) {
|
|
return 0.0f;
|
|
}
|
|
|
|
const uint16_t k_m1 = (k_max - 1) * 2;
|
|
const uint16_t k_p1 = (k_max + 1) * 2;
|
|
const uint16_t k = k_max * 2;
|
|
|
|
const float divider = complex_fft[k] * complex_fft[k] + complex_fft[k+1] * complex_fft[k+1];
|
|
const float ap = (complex_fft[k_p1] * complex_fft[k] + complex_fft[k_p1 + 1] * complex_fft[k+1]) / divider;
|
|
const float am = (complex_fft[k_m1] * complex_fft[k] + complex_fft[k_m1 + 1] * complex_fft[k + 1]) / divider;
|
|
|
|
// sanity check
|
|
if (fabsf(1.0f - ap) < 0.01f || fabsf(1.0f - am) < 0.01f) {
|
|
return 0.0f;
|
|
}
|
|
|
|
const float dp = -ap / (1.0f - ap);
|
|
const float dm = am / (1.0f - am);
|
|
|
|
float d = (dp + dm) * 0.5f + tau(dp * dp) - tau(dm * dm);
|
|
|
|
// -0.5 < d < 0.5 which is the fraction of the sample spacing about the center element
|
|
return constrain_float(d, -0.5f, 0.5f);
|
|
}
|
|
|
|
static const float TAU_FACTOR = SQRT_6 / 24.0f;
|
|
|
|
// Helper function used for Quinn's frequency estimation
|
|
float DSP::tau(const float x) const
|
|
{
|
|
float p1 = logf(3.0f * sq(x) + 6.0f * x + 1.0f);
|
|
float part1 = x + 1.0f - SQRT_2_3;
|
|
float part2 = x + 1.0f + SQRT_2_3;
|
|
float p2 = logf(part1 / part2);
|
|
return (0.25f * p1 - TAU_FACTOR * p2);
|
|
}
|
|
|
|
// find all the peaks in the fft window using https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
|
|
// in general peakgrup > 2 is only good for very broad noisy peaks, <= 2 better for spikey peaks, although 1 will miss
|
|
// a true spike 50% of the time
|
|
uint16_t DSP::find_peaks(const float* input, uint16_t length, float* d, uint16_t* peaks, uint16_t peaklen,
|
|
float slopeThreshold, float ampThreshold, uint16_t smoothwidth, uint16_t peakgroup) const
|
|
{
|
|
if (smoothwidth > 1) {
|
|
derivative(input, d, length);
|
|
fastsmooth(d, length, smoothwidth);
|
|
} else {
|
|
derivative(input, d, length);
|
|
}
|
|
|
|
uint16_t n = ((peakgroup + 1) >> 1) + 1;
|
|
uint16_t halfw = (smoothwidth + 1) >> 1;
|
|
uint16_t numpeaks = 0;
|
|
uint16_t peakX = 0;
|
|
float peakY = 0;
|
|
uint16_t pindex;
|
|
uint16_t xx[peakgroup];
|
|
float yy[peakgroup];
|
|
memset(xx, 0, peakgroup * sizeof(uint16_t));
|
|
memset(yy, 0, peakgroup * sizeof(float));
|
|
|
|
for (uint16_t j = (halfw << 1) - 2; j < length - smoothwidth - 1; j++) {
|
|
if (d[j] >= 0 && d[j + 1] <= 0 && !is_equal(d[j], d[j + 1])) { // detect zero crossing
|
|
if ((d[j] - d[j + 1]) > slopeThreshold) {
|
|
for (uint16_t k = 0; k < peakgroup; k++) {
|
|
uint16_t groupIndex = j + k - n + 2;
|
|
groupIndex = constrain_int16(groupIndex, 0, length - 1);
|
|
xx[k] = groupIndex;
|
|
yy[k] = input[groupIndex];
|
|
}
|
|
if (peakgroup < 3) {
|
|
vector_max_float(yy, peakgroup, &peakY, &pindex);
|
|
} else {
|
|
peakY = vector_mean_float(yy, peakgroup);
|
|
pindex = val2index(yy, peakgroup, peakY);
|
|
}
|
|
peakX = xx[pindex];
|
|
//hal.console->printf("zero %d, gindex %d -> %d, index %d, val %f\n", j, j -n +2, j+peakgroup -1 - n +2, peakX, peakY);
|
|
// see if we have a valid peak
|
|
if (isfinite(peakY) && peakY >= ampThreshold) {
|
|
// record in amplitude order
|
|
for (int16_t i = 0; i < peaklen; i++) {
|
|
if (i >= numpeaks) {
|
|
peaks[i] = peakX;
|
|
break;
|
|
}
|
|
if (peakY > input[peaks[i]]) {
|
|
for (int16_t a = peaklen - 1; a > i; a--) {
|
|
peaks[a] = peaks[a - 1];
|
|
}
|
|
peaks[i] = peakX;
|
|
break;
|
|
}
|
|
}
|
|
numpeaks++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return numpeaks;
|
|
}
|
|
|
|
// Returns the index and the value of the element of a vector that is closest to val
|
|
uint16_t DSP::val2index(const float* vector, uint16_t n, float val) const
|
|
{
|
|
float minval = FLT_MAX;
|
|
uint16_t minidx = 0;
|
|
for (uint16_t i = 0; i < n; i++) {
|
|
float dif = fabsf(vector[i] - val);
|
|
if (dif < minval) {
|
|
minval = dif;
|
|
minidx = i;
|
|
}
|
|
}
|
|
return minidx;
|
|
}
|
|
|
|
// First derivative of vector using 2-point central difference.
|
|
void DSP::derivative(const float* input, float* output, uint16_t n) const
|
|
{
|
|
output[0] = input[1] - input[0];
|
|
output[n - 1] = input[n - 1] - input[n - 2];
|
|
for (uint16_t i = 1; i < n - 1; i++) {
|
|
output[i] = (input[i + 1] - input[i - 1]) / 2.0f;
|
|
}
|
|
}
|
|
|
|
// smooth a vector in-place
|
|
void DSP::fastsmooth(float* input, uint16_t n, uint16_t smoothwidth) const
|
|
{
|
|
float window[smoothwidth];
|
|
memset(window, 0, smoothwidth * sizeof(float));
|
|
float sumpoints = 0.0f;
|
|
for (int i = 0; i < smoothwidth; i++) {
|
|
sumpoints += input[i];
|
|
}
|
|
uint16_t halfw = (smoothwidth + 1) >> 1;
|
|
for (int i = 0; i < n - smoothwidth; i++) {
|
|
window[i % smoothwidth] = sumpoints;
|
|
sumpoints -= input[i];
|
|
sumpoints += input[i + smoothwidth];
|
|
input[i] = window[(i + smoothwidth - 1) % smoothwidth] / smoothwidth;
|
|
}
|
|
uint16_t last = n - smoothwidth + halfw;
|
|
input[last] = 0.0f;
|
|
for (int i = last + 1; i < n; i++) {
|
|
input[last] += input[i];
|
|
}
|
|
input[n - smoothwidth + halfw] /= smoothwidth;
|
|
for (int i = last + 1; i < n; i++) {
|
|
input[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
#endif // HAL_WITH_DSP
|