ardupilot/libraries/AP_HAL_Linux/Scheduler.cpp

424 lines
10 KiB
C++

#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "Scheduler.h"
#include "Storage.h"
#include "RCInput.h"
#include "UARTDriver.h"
#include "Util.h"
#include "SPIUARTDriver.h"
#include <sys/time.h>
#include <poll.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/mman.h>
using namespace Linux;
extern const AP_HAL::HAL& hal;
#define APM_LINUX_TIMER_PRIORITY 15
#define APM_LINUX_UART_PRIORITY 14
#define APM_LINUX_RCIN_PRIORITY 13
#define APM_LINUX_MAIN_PRIORITY 12
#define APM_LINUX_TONEALARM_PRIORITY 11
#define APM_LINUX_IO_PRIORITY 10
LinuxScheduler::LinuxScheduler()
{}
void LinuxScheduler::_create_realtime_thread(pthread_t *ctx, int rtprio,
const char *name,
pthread_startroutine_t start_routine)
{
struct sched_param param = { .sched_priority = rtprio };
pthread_attr_t attr;
int r;
pthread_attr_init(&attr);
/*
we need to run as root to get realtime scheduling. Allow it to
run as non-root for debugging purposes, plus to allow the Replay
tool to run
*/
if (geteuid() == 0) {
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
pthread_attr_setschedparam(&attr, &param);
}
r = pthread_create(ctx, &attr, start_routine, this);
if (r != 0) {
hal.console->printf("Error creating thread '%s': %s\n",
name, strerror(r));
panic(PSTR("Failed to create thread"));
}
pthread_attr_destroy(&attr);
if (name) {
pthread_setname_np(*ctx, name);
}
}
void LinuxScheduler::init(void* machtnichts)
{
mlockall(MCL_CURRENT|MCL_FUTURE);
clock_gettime(CLOCK_MONOTONIC, &_sketch_start_time);
struct sched_param param = { .sched_priority = APM_LINUX_MAIN_PRIORITY };
sched_setscheduler(0, SCHED_FIFO, &param);
struct {
pthread_t *ctx;
int rtprio;
const char *name;
pthread_startroutine_t start_routine;
} *iter, table[] = {
{ .ctx = &_timer_thread_ctx,
.rtprio = APM_LINUX_TIMER_PRIORITY,
.name = "sched-timer",
.start_routine = &Linux::LinuxScheduler::_timer_thread,
},
{ .ctx = &_uart_thread_ctx,
.rtprio = APM_LINUX_UART_PRIORITY,
.name = "sched-uart",
.start_routine = &Linux::LinuxScheduler::_uart_thread,
},
{ .ctx = &_rcin_thread_ctx,
.rtprio = APM_LINUX_RCIN_PRIORITY,
.name = "sched-rcin",
.start_routine = &Linux::LinuxScheduler::_rcin_thread,
},
{ .ctx = &_tonealarm_thread_ctx,
.rtprio = APM_LINUX_TONEALARM_PRIORITY,
.name = "sched-tonealarm",
.start_routine = &Linux::LinuxScheduler::_tonealarm_thread,
},
{ .ctx = &_io_thread_ctx,
.rtprio = APM_LINUX_IO_PRIORITY,
.name = "sched-io",
.start_routine = &Linux::LinuxScheduler::_io_thread,
},
{ }
};
if (geteuid() != 0) {
printf("WARNING: running as non-root. Will not use realtime scheduling\n");
}
for (iter = table; iter->ctx; iter++)
_create_realtime_thread(iter->ctx, iter->rtprio, iter->name,
iter->start_routine);
}
void LinuxScheduler::_microsleep(uint32_t usec)
{
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = usec*1000UL;
while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ;
}
void LinuxScheduler::delay(uint16_t ms)
{
if (stopped_clock_usec) {
return;
}
uint64_t start = millis64();
while ((millis64() - start) < ms) {
// this yields the CPU to other apps
_microsleep(1000);
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
uint64_t LinuxScheduler::millis64()
{
if (stopped_clock_usec) {
return stopped_clock_usec/1000;
}
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return 1.0e3*((ts.tv_sec + (ts.tv_nsec*1.0e-9)) -
(_sketch_start_time.tv_sec +
(_sketch_start_time.tv_nsec*1.0e-9)));
}
uint64_t LinuxScheduler::micros64()
{
if (stopped_clock_usec) {
return stopped_clock_usec;
}
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return 1.0e6*((ts.tv_sec + (ts.tv_nsec*1.0e-9)) -
(_sketch_start_time.tv_sec +
(_sketch_start_time.tv_nsec*1.0e-9)));
}
uint32_t LinuxScheduler::millis()
{
return millis64() & 0xFFFFFFFF;
}
uint32_t LinuxScheduler::micros()
{
return micros64() & 0xFFFFFFFF;
}
void LinuxScheduler::delay_microseconds(uint16_t us)
{
if (stopped_clock_usec) {
return;
}
_microsleep(us);
}
void LinuxScheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void LinuxScheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void LinuxScheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < LINUX_SCHEDULER_MAX_IO_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void LinuxScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void LinuxScheduler::suspend_timer_procs()
{
if (!_timer_semaphore.take(0)) {
printf("Failed to take timer semaphore\n");
}
}
void LinuxScheduler::resume_timer_procs()
{
_timer_semaphore.give();
}
void LinuxScheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_semaphore.take(0)) {
printf("Failed to take timer semaphore in _run_timers\n");
}
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
_timer_semaphore.give();
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe();
}
_in_timer_proc = false;
}
void *LinuxScheduler::_timer_thread(void* arg)
{
LinuxScheduler* sched = (LinuxScheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
/*
this aims to run at an average of 1kHz, so that it can be used
to drive 1kHz processes without drift
*/
uint64_t next_run_usec = sched->micros64() + 1000;
while (true) {
uint64_t dt = next_run_usec - sched->micros64();
if (dt > 2000) {
// we've lost sync - restart
next_run_usec = sched->micros64();
} else {
sched->_microsleep(dt);
}
next_run_usec += 1000;
// run registered timers
sched->_run_timers(true);
}
return NULL;
}
void LinuxScheduler::_run_io(void)
{
if (!_io_semaphore.take(0)) {
return;
}
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_io_semaphore.give();
}
void *LinuxScheduler::_rcin_thread(void *arg)
{
LinuxScheduler* sched = (LinuxScheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(10000);
((LinuxRCInput *)hal.rcin)->_timer_tick();
}
return NULL;
}
void *LinuxScheduler::_uart_thread(void* arg)
{
LinuxScheduler* sched = (LinuxScheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(10000);
// process any pending serial bytes
((LinuxUARTDriver *)hal.uartA)->_timer_tick();
((LinuxUARTDriver *)hal.uartB)->_timer_tick();
((LinuxUARTDriver *)hal.uartC)->_timer_tick();
((LinuxUARTDriver *)hal.uartE)->_timer_tick();
}
return NULL;
}
void *LinuxScheduler::_tonealarm_thread(void* arg)
{
LinuxScheduler* sched = (LinuxScheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(10000);
// process tone command
((LinuxUtil *)hal.util)->_toneAlarm_timer_tick();
}
return NULL;
}
void *LinuxScheduler::_io_thread(void* arg)
{
LinuxScheduler* sched = (LinuxScheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(20000);
// process any pending storage writes
((LinuxStorage *)hal.storage)->_timer_tick();
// run registered IO processes
sched->_run_io();
}
return NULL;
}
void LinuxScheduler::panic(const prog_char_t *errormsg)
{
write(1, errormsg, strlen(errormsg));
write(1, "\n", 1);
hal.scheduler->delay_microseconds(10000);
exit(1);
}
bool LinuxScheduler::in_timerprocess()
{
return _in_timer_proc;
}
void LinuxScheduler::begin_atomic()
{}
void LinuxScheduler::end_atomic()
{}
bool LinuxScheduler::system_initializing() {
return !_initialized;
}
void LinuxScheduler::system_initialized()
{
if (_initialized) {
panic("PANIC: scheduler::system_initialized called more than once");
}
_initialized = true;
}
void LinuxScheduler::reboot(bool hold_in_bootloader)
{
exit(1);
}
void LinuxScheduler::stop_clock(uint64_t time_usec)
{
if (time_usec >= stopped_clock_usec) {
stopped_clock_usec = time_usec;
_run_io();
}
}
#endif // CONFIG_HAL_BOARD