mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 08:38:36 -04:00
424 lines
14 KiB
C++
424 lines
14 KiB
C++
#pragma once
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <GCS_MAVLink/GCS_MAVLink.h>
|
|
#include <AP_Baro/AP_Baro.h>
|
|
#include <AP_Common/Location.h>
|
|
#include <AP_Compass/AP_Compass.h>
|
|
#include "SIM_Buzzer.h"
|
|
#include "SIM_Gripper_EPM.h"
|
|
#include "SIM_Gripper_Servo.h"
|
|
#include "SIM_I2C.h"
|
|
#include "SIM_Parachute.h"
|
|
#include "SIM_Precland.h"
|
|
#include "SIM_Sprayer.h"
|
|
#include "SIM_ToneAlarm.h"
|
|
#include "SIM_EFI_MegaSquirt.h"
|
|
#include "SIM_RichenPower.h"
|
|
#include "SIM_Ship.h"
|
|
#include <AP_RangeFinder/AP_RangeFinder.h>
|
|
|
|
namespace SITL {
|
|
|
|
enum class LedLayout {
|
|
ROWS=0,
|
|
LUMINOUSBEE=1,
|
|
};
|
|
|
|
struct vector3f_array {
|
|
uint16_t length;
|
|
Vector3f *data;
|
|
};
|
|
|
|
struct float_array {
|
|
uint16_t length;
|
|
float *data;
|
|
};
|
|
|
|
|
|
struct sitl_fdm {
|
|
// this is the structure passed between FDM models and the main SITL code
|
|
uint64_t timestamp_us;
|
|
Location home;
|
|
double latitude, longitude; // degrees
|
|
double altitude; // MSL
|
|
double heading; // degrees
|
|
double speedN, speedE, speedD; // m/s
|
|
double xAccel, yAccel, zAccel; // m/s/s in body frame
|
|
double rollRate, pitchRate, yawRate; // degrees/s/s in body frame
|
|
double rollDeg, pitchDeg, yawDeg; // euler angles, degrees
|
|
Quaternion quaternion;
|
|
double airspeed; // m/s
|
|
double battery_voltage; // Volts
|
|
double battery_current; // Amps
|
|
uint8_t num_motors;
|
|
float rpm[12]; // RPM of all motors
|
|
uint8_t rcin_chan_count;
|
|
float rcin[12]; // RC input 0..1
|
|
double range; // rangefinder value
|
|
Vector3f bodyMagField; // Truth XYZ magnetic field vector in body-frame. Includes motor interference. Units are milli-Gauss.
|
|
Vector3f angAccel; // Angular acceleration in degrees/s/s about the XYZ body axes
|
|
|
|
struct {
|
|
// data from simulated laser scanner, if available
|
|
struct vector3f_array points;
|
|
struct float_array ranges;
|
|
} scanner;
|
|
|
|
float rangefinder_m[RANGEFINDER_MAX_INSTANCES];
|
|
|
|
struct {
|
|
float speed;
|
|
float direction;
|
|
} wind_vane_apparent;
|
|
};
|
|
|
|
// number of rc output channels
|
|
#define SITL_NUM_CHANNELS 16
|
|
|
|
class SITL {
|
|
public:
|
|
|
|
SITL() {
|
|
// set a default compass offset
|
|
for (uint8_t i = 0; i < HAL_COMPASS_MAX_SENSORS; i++) {
|
|
mag_ofs[i].set(Vector3f(5, 13, -18));
|
|
}
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
AP_Param::setup_object_defaults(this, var_info2);
|
|
AP_Param::setup_object_defaults(this, var_info3);
|
|
AP_Param::setup_object_defaults(this, var_gps);
|
|
AP_Param::setup_object_defaults(this, var_mag);
|
|
if (_singleton != nullptr) {
|
|
AP_HAL::panic("Too many SITL instances");
|
|
}
|
|
_singleton = this;
|
|
}
|
|
|
|
/* Do not allow copies */
|
|
SITL(const SITL &other) = delete;
|
|
SITL &operator=(const SITL&) = delete;
|
|
|
|
static SITL *_singleton;
|
|
static SITL *get_singleton() { return _singleton; }
|
|
|
|
enum SITL_RCFail {
|
|
SITL_RCFail_None = 0,
|
|
SITL_RCFail_NoPulses = 1,
|
|
SITL_RCFail_Throttle950 = 2,
|
|
};
|
|
|
|
enum GPSType {
|
|
GPS_TYPE_NONE = 0,
|
|
GPS_TYPE_UBLOX = 1,
|
|
GPS_TYPE_MTK = 2,
|
|
GPS_TYPE_MTK16 = 3,
|
|
GPS_TYPE_MTK19 = 4,
|
|
GPS_TYPE_NMEA = 5,
|
|
GPS_TYPE_SBP = 6,
|
|
GPS_TYPE_FILE = 7,
|
|
GPS_TYPE_NOVA = 8,
|
|
GPS_TYPE_SBP2 = 9,
|
|
};
|
|
|
|
struct sitl_fdm state;
|
|
|
|
// loop update rate in Hz
|
|
uint16_t update_rate_hz;
|
|
|
|
// throttle when motors are active
|
|
float throttle;
|
|
|
|
// height above ground
|
|
float height_agl;
|
|
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
static const struct AP_Param::GroupInfo var_info2[];
|
|
static const struct AP_Param::GroupInfo var_info3[];
|
|
static const struct AP_Param::GroupInfo var_gps[];
|
|
static const struct AP_Param::GroupInfo var_mag[];
|
|
|
|
// Board Orientation (and inverse)
|
|
Matrix3f ahrs_rotation;
|
|
Matrix3f ahrs_rotation_inv;
|
|
|
|
// noise levels for simulated sensors
|
|
AP_Float baro_noise[BARO_MAX_INSTANCES]; // in metres
|
|
AP_Float baro_drift[BARO_MAX_INSTANCES]; // in metres per second
|
|
AP_Float baro_glitch[BARO_MAX_INSTANCES]; // glitch in meters
|
|
AP_Int8 baro_freeze[BARO_MAX_INSTANCES]; // freeze baro to last recorded altitude
|
|
AP_Float gyro_noise; // in degrees/second
|
|
AP_Vector3f gyro_scale; // percentage
|
|
AP_Float accel_noise; // in m/s/s
|
|
AP_Float accel2_noise; // in m/s/s
|
|
AP_Vector3f accel_bias; // in m/s/s
|
|
AP_Vector3f accel2_bias; // in m/s/s
|
|
|
|
AP_Float arspd_noise[2]; // pressure noise
|
|
AP_Float arspd_fail[2]; // airspeed value in m/s to fail to
|
|
AP_Float arspd_fail_pressure[2]; // pitot tube failure pressure in Pa
|
|
AP_Float arspd_fail_pitot_pressure[2]; // pitot tube failure pressure in Pa
|
|
AP_Float arspd_offset[2]; // airspeed sensor offset in m/s
|
|
|
|
AP_Float mag_noise; // in mag units (earth field is 818)
|
|
AP_Vector3f mag_mot; // in mag units per amp
|
|
AP_Vector3f mag_ofs[HAL_COMPASS_MAX_SENSORS]; // in mag units
|
|
AP_Vector3f mag_diag[HAL_COMPASS_MAX_SENSORS]; // diagonal corrections
|
|
AP_Vector3f mag_offdiag[HAL_COMPASS_MAX_SENSORS]; // off-diagonal corrections
|
|
AP_Int8 mag_orient[HAL_COMPASS_MAX_SENSORS]; // external compass orientation
|
|
AP_Int8 mag_fail[HAL_COMPASS_MAX_SENSORS]; // fail magnetometer, 1 for no data, 2 for freeze
|
|
AP_Float servo_speed; // servo speed in seconds
|
|
|
|
AP_Float sonar_glitch;// probablility between 0-1 that any given sonar sample will read as max distance
|
|
AP_Float sonar_noise; // in metres
|
|
AP_Float sonar_scale; // meters per volt
|
|
|
|
AP_Float drift_speed; // degrees/second/minute
|
|
AP_Float drift_time; // period in minutes
|
|
AP_Float engine_mul; // engine multiplier
|
|
AP_Int8 engine_fail; // engine servo to fail (0-7)
|
|
|
|
AP_Float gps_noise[2]; // amplitude of the gps altitude error
|
|
AP_Int16 gps_lock_time[2]; // delay in seconds before GPS gets lock
|
|
AP_Int16 gps_alt_offset[2]; // gps alt error
|
|
AP_Int8 gps_disable[2]; // disable simulated GPS
|
|
AP_Int8 gps_delay[2]; // delay in samples
|
|
AP_Int8 gps_type[2]; // see enum GPSType
|
|
AP_Float gps_byteloss[2];// byte loss as a percent
|
|
AP_Int8 gps_numsats[2]; // number of visible satellites
|
|
AP_Vector3f gps_glitch[2]; // glitch offsets in lat, lon and altitude
|
|
AP_Int8 gps_hertz[2]; // GPS update rate in Hz
|
|
AP_Int8 gps_hdg_enabled[2]; // enable the output of a NMEA heading HDT sentence or UBLOX RELPOSNED
|
|
AP_Float gps_drift_alt[2]; // altitude drift error
|
|
AP_Vector3f gps_pos_offset[2]; // XYZ position of the GPS antenna phase centre relative to the body frame origin (m)
|
|
AP_Float gps_accuracy[2];
|
|
AP_Vector3f gps_vel_err[2]; // Velocity error offsets in NED (x = N, y = E, z = D)
|
|
|
|
AP_Float batt_voltage; // battery voltage base
|
|
AP_Float accel_fail; // accelerometer failure value
|
|
AP_Int8 rc_fail; // fail RC input
|
|
AP_Int8 rc_chancount; // channel count
|
|
AP_Int8 baro_disable[BARO_MAX_INSTANCES]; // disable simulated barometers
|
|
AP_Int8 float_exception; // enable floating point exception checks
|
|
AP_Int8 flow_enable; // enable simulated optflow
|
|
AP_Int16 flow_rate; // optflow data rate (Hz)
|
|
AP_Int8 flow_delay; // optflow data delay
|
|
AP_Int8 terrain_enable; // enable using terrain for height
|
|
AP_Int16 pin_mask; // for GPIO emulation
|
|
AP_Float speedup; // simulation speedup
|
|
AP_Int8 odom_enable; // enable visual odomotry data
|
|
AP_Int8 telem_baudlimit_enable; // enable baudrate limiting on links
|
|
AP_Float flow_noise; // optical flow measurement noise (rad/sec)
|
|
AP_Int8 baro_count; // number of simulated baros to create
|
|
AP_Int8 imu_count; // number of simulated IMUs to create
|
|
AP_Int32 loop_delay; // extra delay to add to every loop
|
|
AP_Float mag_scaling[MAX_CONNECTED_MAGS]; // scaling factor
|
|
AP_Int32 mag_devid[MAX_CONNECTED_MAGS]; // Mag devid
|
|
AP_Float buoyancy; // submarine buoyancy in Newtons
|
|
AP_Int16 loop_rate_hz;
|
|
|
|
// EFI type
|
|
enum EFIType {
|
|
EFI_TYPE_NONE = 0,
|
|
EFI_TYPE_MS = 1,
|
|
};
|
|
|
|
AP_Int8 efi_type;
|
|
|
|
// wind control
|
|
enum WindType {
|
|
WIND_TYPE_SQRT = 0,
|
|
WIND_TYPE_NO_LIMIT = 1,
|
|
WIND_TYPE_COEF = 2,
|
|
};
|
|
|
|
float wind_speed_active;
|
|
float wind_direction_active;
|
|
float wind_dir_z_active;
|
|
AP_Float wind_speed;
|
|
AP_Float wind_direction;
|
|
AP_Float wind_turbulance;
|
|
AP_Float wind_dir_z;
|
|
AP_Int8 wind_type; // enum WindLimitType
|
|
AP_Float wind_type_alt;
|
|
AP_Float wind_type_coef;
|
|
|
|
AP_Int16 baro_delay; // barometer data delay in ms
|
|
AP_Int16 mag_delay; // magnetometer data delay in ms
|
|
AP_Int16 wind_delay; // windspeed data delay in ms
|
|
|
|
// ADSB related run-time options
|
|
AP_Int16 adsb_plane_count;
|
|
AP_Float adsb_radius_m;
|
|
AP_Float adsb_altitude_m;
|
|
AP_Int8 adsb_tx;
|
|
|
|
// Earth magnetic field anomaly
|
|
AP_Vector3f mag_anomaly_ned; // NED anomaly vector at ground level (mGauss)
|
|
AP_Float mag_anomaly_hgt; // height above ground where anomally strength has decayed to 1/8 of the ground level value (m)
|
|
|
|
// Body frame sensor position offsets
|
|
AP_Vector3f imu_pos_offset; // XYZ position of the IMU accelerometer relative to the body frame origin (m)
|
|
AP_Vector3f rngfnd_pos_offset; // XYZ position of the range finder zero range datum relative to the body frame origin (m)
|
|
AP_Vector3f optflow_pos_offset; // XYZ position of the optical flow sensor focal point relative to the body frame origin (m)
|
|
AP_Vector3f vicon_pos_offset; // XYZ position of the vicon sensor relative to the body frame origin (m)
|
|
|
|
// temperature control
|
|
AP_Float temp_start;
|
|
AP_Float temp_flight;
|
|
AP_Float temp_tconst;
|
|
AP_Float temp_baro_factor;
|
|
|
|
AP_Int8 thermal_scenario;
|
|
|
|
// differential pressure sensor tube order
|
|
AP_Int8 arspd_signflip;
|
|
|
|
// weight on wheels pin
|
|
AP_Int8 wow_pin;
|
|
|
|
// vibration frequencies in Hz on each axis
|
|
AP_Vector3f vibe_freq;
|
|
|
|
// max frequency to use as baseline for adding motor noise for the gyros and accels
|
|
AP_Float vibe_motor;
|
|
// amplitude scaling of motor noise relative to gyro/accel noise
|
|
AP_Float vibe_motor_scale;
|
|
// minimum throttle for addition of ins noise
|
|
AP_Float ins_noise_throttle_min;
|
|
|
|
// gyro and accel fail masks
|
|
AP_Int8 gyro_fail_mask;
|
|
AP_Int8 accel_fail_mask;
|
|
|
|
struct {
|
|
AP_Float x;
|
|
AP_Float y;
|
|
AP_Float z;
|
|
AP_Int32 t;
|
|
|
|
uint32_t start_ms;
|
|
} shove;
|
|
|
|
struct {
|
|
AP_Float x;
|
|
AP_Float y;
|
|
AP_Float z;
|
|
AP_Int32 t;
|
|
|
|
uint32_t start_ms;
|
|
} twist;
|
|
|
|
AP_Int8 gnd_behav;
|
|
|
|
struct {
|
|
AP_Int8 enable; // 0: disabled, 1: roll and pitch, 2: roll, pitch and heave
|
|
AP_Float length; // m
|
|
AP_Float amp; // m
|
|
AP_Float direction; // deg (direction wave is coming from)
|
|
AP_Float speed; // m/s
|
|
} wave;
|
|
|
|
struct {
|
|
AP_Float direction; // deg (direction tide is coming from)
|
|
AP_Float speed; // m/s
|
|
} tide;
|
|
|
|
// original simulated position
|
|
struct {
|
|
AP_Float lat;
|
|
AP_Float lng;
|
|
AP_Float alt; // metres
|
|
AP_Float hdg; // 0 to 360
|
|
} opos;
|
|
|
|
AP_Int8 _safety_switch_state;
|
|
|
|
AP_HAL::Util::safety_state safety_switch_state() const {
|
|
return (AP_HAL::Util::safety_state)_safety_switch_state.get();
|
|
}
|
|
void force_safety_off() {
|
|
_safety_switch_state = (uint8_t)AP_HAL::Util::SAFETY_ARMED;
|
|
}
|
|
bool force_safety_on() {
|
|
_safety_switch_state = (uint8_t)AP_HAL::Util::SAFETY_DISARMED;
|
|
return true;
|
|
}
|
|
|
|
uint16_t irlock_port;
|
|
|
|
time_t start_time_UTC;
|
|
|
|
void simstate_send(mavlink_channel_t chan);
|
|
|
|
void Log_Write_SIMSTATE();
|
|
|
|
// convert a set of roll rates from earth frame to body frame
|
|
static void convert_body_frame(double rollDeg, double pitchDeg,
|
|
double rollRate, double pitchRate, double yawRate,
|
|
double *p, double *q, double *r);
|
|
|
|
// convert a set of roll rates from body frame to earth frame
|
|
static Vector3f convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro);
|
|
|
|
int i2c_ioctl(uint8_t i2c_operation, void *data) {
|
|
return i2c_sim.ioctl(i2c_operation, data);
|
|
}
|
|
|
|
Sprayer sprayer_sim;
|
|
|
|
// simulated ship takeoffs
|
|
ShipSim shipsim;
|
|
|
|
Gripper_Servo gripper_sim;
|
|
Gripper_EPM gripper_epm_sim;
|
|
|
|
Parachute parachute_sim;
|
|
Buzzer buzzer_sim;
|
|
I2C i2c_sim;
|
|
ToneAlarm tonealarm_sim;
|
|
SIM_Precland precland_sim;
|
|
RichenPower richenpower_sim;
|
|
|
|
struct {
|
|
// LED state, for serial LED emulation
|
|
struct {
|
|
uint8_t rgb[3];
|
|
} rgb[16][32];
|
|
uint8_t num_leds[16];
|
|
uint32_t send_counter;
|
|
} led;
|
|
|
|
EFI_MegaSquirt efi_ms;
|
|
|
|
AP_Int8 led_layout;
|
|
|
|
// vicon parameters
|
|
AP_Vector3f vicon_glitch; // glitch in meters in vicon's local NED frame
|
|
AP_Int8 vicon_fail; // trigger vicon failure
|
|
AP_Int16 vicon_yaw; // vicon local yaw in degrees
|
|
AP_Int16 vicon_yaw_error; // vicon yaw error in degrees (added to reported yaw sent to vehicle)
|
|
AP_Int8 vicon_type_mask; // vicon message type mask (bit0:vision position estimate, bit1:vision speed estimate, bit2:vicon position estimate)
|
|
AP_Vector3f vicon_vel_glitch; // velocity glitch in m/s in vicon's local frame
|
|
|
|
// get the rangefinder reading for the desired instance, returns -1 for no data
|
|
float get_rangefinder(uint8_t instance);
|
|
|
|
// get the apparent wind speed and direction as set by external physics backend
|
|
float get_apparent_wind_dir(){return state.wind_vane_apparent.direction;}
|
|
float get_apparent_wind_spd(){return state.wind_vane_apparent.speed;}
|
|
};
|
|
|
|
} // namespace SITL
|
|
|
|
|
|
namespace AP {
|
|
SITL::SITL *sitl();
|
|
};
|
|
|
|
#endif // CONFIG_HAL_BOARD
|