ardupilot/Tools/Replay/LR_MsgHandler.cpp
Peter Barker 1cefd2943b Replay: correct various atrophications in Replay tool
Replay: tear down threads before exitting

NKQ is a generated name - don't copy it across to output

Stop whinging about presence of NKF6 and friends; we know these generated names are not going to be present in modern logs

memcpy rather than strncpy within log_FMT

Correct strings vs optionally-terminated structure entries in sanity checks

Call AP_Param::load_all() to start the parameter saving thread.  AP_Compass' init() method now saves parameters (compass reordering), and because we're disarmed we will block until the parameter is pushed onto the to-save queue; if there's no thread popping off that list we block indefinitely.

Remove duplicate definitions of various singleton objects.

Replay: write out GPS message to output log

Useful for diagnosis, but also because we struggle to find a time base
without this and the pymavlink tools take forever to work

Replay: set COMPASS_DEV_ID and COMPASS_PRIO1_ID so EKF gets mag data

Replay: avoid use of system clock; use stopped-clock only

Replay: constraint to emitting output for single core only
2020-09-15 10:02:36 +10:00

469 lines
13 KiB
C++

#include "LR_MsgHandler.h"
#include "LogReader.h"
#include "Replay.h"
#include <AP_HAL_Linux/Scheduler.h>
#include <cinttypes>
extern const AP_HAL::HAL& hal;
LR_MsgHandler::LR_MsgHandler(struct log_Format &_f,
AP_Logger &_logger,
uint64_t &_last_timestamp_usec) :
logger(_logger), last_timestamp_usec(_last_timestamp_usec),
MsgHandler(_f) {
}
void LR_MsgHandler::wait_timestamp_usec(uint64_t timestamp)
{
last_timestamp_usec = timestamp;
hal.scheduler->stop_clock(timestamp);
}
void LR_MsgHandler::wait_timestamp(uint32_t timestamp)
{
uint64_t usecs = timestamp*1000UL;
wait_timestamp_usec(usecs);
}
void LR_MsgHandler::wait_timestamp_from_msg(uint8_t *msg)
{
uint64_t time_us;
uint32_t time_ms;
if (field_value(msg, "TimeUS", time_us)) {
// 64-bit timestamp present - great!
wait_timestamp_usec(time_us);
} else if (field_value(msg, "TimeMS", time_ms)) {
// there is special rounding code that needs to be crossed in
// wait_timestamp:
wait_timestamp(time_ms);
} else {
::printf("No timestamp on message");
}
}
/*
* subclasses to handle specific messages below here
*/
void LR_MsgHandler_AHR2::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
attitude_from_msg(msg, ahr2_attitude, "Roll", "Pitch", "Yaw");
}
void LR_MsgHandler_ARM::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
uint8_t ArmState = require_field_uint8_t(msg, "ArmState");
hal.util->set_soft_armed(ArmState);
printf("Armed state: %u at %lu\n",
(unsigned)ArmState,
(unsigned long)AP_HAL::millis());
}
void LR_MsgHandler_ARSP::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
airspeed.setHIL(require_field_float(msg, "Airspeed"),
require_field_float(msg, "DiffPress"),
require_field_float(msg, "Temp"));
}
void LR_MsgHandler_NKF1::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
}
void LR_MsgHandler_NKF1::process_message(uint8_t *msg, uint8_t &core)
{
wait_timestamp_from_msg(msg);
if (!field_value(msg, "C", core)) {
// 255 here is a special marker for "no core present in log".
// This may give us a hope of backwards-compatability.
core = 255;
}
}
void LR_MsgHandler_XKF1::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
}
void LR_MsgHandler_XKF1::process_message(uint8_t *msg, uint8_t &core)
{
wait_timestamp_from_msg(msg);
if (!field_value(msg, "C", core)) {
// 255 here is a special marker for "no core present in log".
// This may give us a hope of backwards-compatability.
core = 255;
}
}
void LR_MsgHandler_ATT::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
attitude_from_msg(msg, attitude, "Roll", "Pitch", "Yaw");
}
void LR_MsgHandler_CHEK::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
check_state.time_us = AP_HAL::micros64();
attitude_from_msg(msg, check_state.euler, "Roll", "Pitch", "Yaw");
check_state.euler *= radians(1);
location_from_msg(msg, check_state.pos, "Lat", "Lng", "Alt");
require_field(msg, "VN", check_state.velocity.x);
require_field(msg, "VE", check_state.velocity.y);
require_field(msg, "VD", check_state.velocity.z);
}
void LR_MsgHandler_BARO::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
uint32_t last_update_ms;
if (!field_value(msg, "SMS", last_update_ms)) {
last_update_ms = 0;
}
AP::baro().setHIL(0,
require_field_float(msg, "Press"),
require_field_int16_t(msg, "Temp") * 0.01f,
require_field_float(msg, "Alt"),
require_field_float(msg, "CRt"),
last_update_ms);
}
void LR_MsgHandler_Event::process_message(uint8_t *msg)
{
uint8_t id = require_field_uint8_t(msg, "Id");
if ((LogEvent)id == LogEvent::ARMED) {
hal.util->set_soft_armed(true);
printf("Armed at %lu\n",
(unsigned long)AP_HAL::millis());
} else if ((LogEvent)id == LogEvent::DISARMED) {
hal.util->set_soft_armed(false);
printf("Disarmed at %lu\n",
(unsigned long)AP_HAL::millis());
}
}
void LR_MsgHandler_GPS2::process_message(uint8_t *msg)
{
update_from_msg_gps(1, msg);
}
void LR_MsgHandler_GPS_Base::update_from_msg_gps(uint8_t gps_offset, uint8_t *msg)
{
uint64_t time_us;
if (! field_value(msg, "TimeUS", time_us)) {
uint32_t timestamp;
require_field(msg, "T", timestamp);
time_us = timestamp * 1000;
}
wait_timestamp_usec(time_us);
Location loc;
location_from_msg(msg, loc, "Lat", "Lng", "Alt");
Vector3f vel;
ground_vel_from_msg(msg, vel, "Spd", "GCrs", "VZ");
uint8_t status = require_field_uint8_t(msg, "Status");
uint8_t hdop = 0;
if (! field_value(msg, "HDop", hdop) &&
! field_value(msg, "HDp", hdop)) {
hdop = 20;
}
uint8_t nsats = 0;
if (! field_value(msg, "NSats", nsats) &&
! field_value(msg, "numSV", nsats)) {
field_not_found(msg, "NSats");
}
uint16_t GWk;
uint32_t GMS;
if (! field_value(msg, "GWk", GWk)) {
field_not_found(msg, "GWk");
}
if (! field_value(msg, "GMS", GMS)) {
field_not_found(msg, "GMS");
}
gps.setHIL(gps_offset,
(AP_GPS::GPS_Status)status,
AP_GPS::time_epoch_convert(GWk, GMS),
loc,
vel,
nsats,
hdop);
if (status == AP_GPS::GPS_OK_FIX_3D && ground_alt_cm == 0) {
ground_alt_cm = require_field_int32_t(msg, "Alt");
}
// we don't call GPS update_instance which would ordinarily write
// these...
AP::logger().Write_GPS(gps_offset);
}
void LR_MsgHandler_GPS::process_message(uint8_t *msg)
{
update_from_msg_gps(0, msg);
}
void LR_MsgHandler_GPA_Base::update_from_msg_gpa(uint8_t gps_offset, uint8_t *msg)
{
uint64_t time_us;
require_field(msg, "TimeUS", time_us);
wait_timestamp_usec(time_us);
uint16_t vdop, hacc, vacc, sacc;
require_field(msg, "VDop", vdop);
require_field(msg, "HAcc", hacc);
require_field(msg, "VAcc", vacc);
require_field(msg, "SAcc", sacc);
uint8_t have_vertical_velocity;
if (! field_value(msg, "VV", have_vertical_velocity)) {
have_vertical_velocity = !is_zero(gps.velocity(gps_offset).z);
}
uint32_t sample_ms;
if (! field_value(msg, "SMS", sample_ms)) {
sample_ms = 0;
}
gps.setHIL_Accuracy(gps_offset, vdop*0.01f, hacc*0.01f, vacc*0.01f, sacc*0.01f, have_vertical_velocity, sample_ms);
}
void LR_MsgHandler_GPA::process_message(uint8_t *msg)
{
update_from_msg_gpa(0, msg);
}
void LR_MsgHandler_GPA2::process_message(uint8_t *msg)
{
update_from_msg_gpa(1, msg);
}
void LR_MsgHandler_IMU2::process_message(uint8_t *msg)
{
update_from_msg_imu(1, msg);
}
void LR_MsgHandler_IMU3::process_message(uint8_t *msg)
{
update_from_msg_imu(2, msg);
}
void LR_MsgHandler_IMU_Base::update_from_msg_imu(uint8_t imu_offset, uint8_t *msg)
{
wait_timestamp_from_msg(msg);
uint8_t this_imu_mask = 1 << imu_offset;
if (gyro_mask & this_imu_mask) {
Vector3f gyro;
require_field(msg, "Gyr", gyro);
ins.set_gyro(imu_offset, gyro);
}
if (accel_mask & this_imu_mask) {
Vector3f accel2;
require_field(msg, "Acc", accel2);
ins.set_accel(imu_offset, accel2);
}
}
void LR_MsgHandler_IMU::process_message(uint8_t *msg)
{
update_from_msg_imu(0, msg);
}
void LR_MsgHandler_IMT_Base::update_from_msg_imt(uint8_t imu_offset, uint8_t *msg)
{
wait_timestamp_from_msg(msg);
if (!use_imt) {
return;
}
uint8_t this_imu_mask = 1 << imu_offset;
float delta_time = 0;
require_field(msg, "DelT", delta_time);
ins.set_delta_time(delta_time);
if (gyro_mask & this_imu_mask) {
Vector3f d_angle;
require_field(msg, "DelA", d_angle);
float d_angle_dt;
if (!field_value(msg, "DelaT", d_angle_dt)) {
d_angle_dt = 0;
}
ins.set_delta_angle(imu_offset, d_angle, d_angle_dt);
}
if (accel_mask & this_imu_mask) {
float dvt = 0;
require_field(msg, "DelvT", dvt);
Vector3f d_velocity;
require_field(msg, "DelV", d_velocity);
ins.set_delta_velocity(imu_offset, dvt, d_velocity);
}
}
void LR_MsgHandler_IMT::process_message(uint8_t *msg)
{
update_from_msg_imt(0, msg);
}
void LR_MsgHandler_IMT2::process_message(uint8_t *msg)
{
update_from_msg_imt(1, msg);
}
void LR_MsgHandler_IMT3::process_message(uint8_t *msg)
{
update_from_msg_imt(2, msg);
}
void LR_MsgHandler_MAG2::process_message(uint8_t *msg)
{
update_from_msg_compass(1, msg);
}
void LR_MsgHandler_MAG_Base::update_from_msg_compass(uint8_t compass_offset, uint8_t *msg)
{
wait_timestamp_from_msg(msg);
Vector3f mag;
require_field(msg, "Mag", mag);
Vector3f mag_offset;
require_field(msg, "Ofs", mag_offset);
uint32_t last_update_usec;
if (!field_value(msg, "S", last_update_usec)) {
last_update_usec = AP_HAL::micros();
}
compass.setHIL(compass_offset, mag - mag_offset, last_update_usec);
// compass_offset is which compass we are setting info for;
// mag_offset is a vector indicating the compass' calibration...
compass.set_offsets(compass_offset, mag_offset);
}
void LR_MsgHandler_MAG::process_message(uint8_t *msg)
{
update_from_msg_compass(0, msg);
}
#include <AP_AHRS/AP_AHRS.h>
#include "VehicleType.h"
void LR_MsgHandler_MSG::process_message(uint8_t *msg)
{
const uint8_t msg_text_len = 64;
char msg_text[msg_text_len];
require_field(msg, "Message", msg_text, msg_text_len);
if (strncmp(msg_text, "ArduPlane", strlen("ArduPlane")) == 0) {
vehicle = VehicleType::VEHICLE_PLANE;
::printf("Detected Plane\n");
ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING);
ahrs.set_fly_forward(true);
} else if (strncmp(msg_text, "ArduCopter", strlen("ArduCopter")) == 0 ||
strncmp(msg_text, "APM:Copter", strlen("APM:Copter")) == 0) {
vehicle = VehicleType::VEHICLE_COPTER;
::printf("Detected Copter\n");
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
ahrs.set_fly_forward(false);
} else if (strncmp(msg_text, "ArduRover", strlen("ArduRover")) == 0) {
vehicle = VehicleType::VEHICLE_ROVER;
::printf("Detected Rover\n");
ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND);
ahrs.set_fly_forward(true);
}
}
void LR_MsgHandler_NTUN_Copter::process_message(uint8_t *msg)
{
inavpos = Vector3f(require_field_float(msg, "PosX") * 0.01f,
require_field_float(msg, "PosY") * 0.01f,
0);
}
bool LR_MsgHandler_PARM::set_parameter(const char *name, const float value)
{
const char *ignore_parms[] = { "GPS_TYPE", "AHRS_EKF_TYPE", "EK2_ENABLE", "EK3_ENABLE"
"COMPASS_ORIENT", "COMPASS_ORIENT2",
"COMPASS_ORIENT3", "LOG_FILE_BUFSIZE",
"LOG_DISARMED"};
for (uint8_t i=0; i < ARRAY_SIZE(ignore_parms); i++) {
if (strncmp(name, ignore_parms[i], AP_MAX_NAME_SIZE) == 0) {
::printf("Ignoring set of %s to %f\n", name, value);
return true;
}
}
return _set_parameter_callback(name, value);
}
void LR_MsgHandler_PARM::process_message(uint8_t *msg)
{
const uint8_t parameter_name_len = AP_MAX_NAME_SIZE + 1; // null-term
char parameter_name[parameter_name_len];
uint64_t time_us;
if (field_value(msg, "TimeUS", time_us)) {
wait_timestamp_usec(time_us);
} else {
// older logs can have a lot of FMT and PARM messages up the
// front which don't have timestamps. Since in Replay we run
// AP_Logger's IO only when stop_clock is called, we can
// overflow AP_Logger's ringbuffer. This should force us to
// do IO:
hal.scheduler->stop_clock(((Linux::Scheduler*)hal.scheduler)->stopped_clock_usec());
}
require_field(msg, "Name", parameter_name, parameter_name_len);
float value = require_field_float(msg, "Value");
if (globals.no_params || replay.check_user_param(parameter_name)) {
printf("Not changing %s to %f\n", parameter_name, value);
} else {
set_parameter(parameter_name, value);
}
}
void LR_MsgHandler_PM::process_message(uint8_t *msg)
{
uint32_t new_logdrop;
if (field_value(msg, "LogDrop", new_logdrop) &&
new_logdrop != 0) {
printf("PM.LogDrop: %u dropped at timestamp %" PRIu64 "\n", new_logdrop, last_timestamp_usec);
}
}
void LR_MsgHandler_SIM::process_message(uint8_t *msg)
{
wait_timestamp_from_msg(msg);
attitude_from_msg(msg, sim_attitude, "Roll", "Pitch", "Yaw");
}