ardupilot/libraries/AP_Baro/AP_Baro.h

171 lines
6.2 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AP_BARO_H__
#define __AP_BARO_H__
#include <AP_HAL/AP_HAL.h>
#include <AP_Param/AP_Param.h>
#include <Filter/Filter.h>
#include <Filter/DerivativeFilter.h>
#include <AP_Buffer/AP_Buffer.h>
// maximum number of sensor instances
#define BARO_MAX_INSTANCES 3
// maximum number of drivers. Note that a single driver can provide
// multiple sensor instances
#define BARO_MAX_DRIVERS 2
class AP_Baro_Backend;
class AP_Baro
{
friend class AP_Baro_Backend;
public:
// constructor
AP_Baro();
// initialise the barometer object, loading backend drivers
void init(void);
// update the barometer object, asking backends to push data to
// the frontend
void update(void);
// healthy - returns true if sensor and derived altitude are good
bool healthy(void) const { return healthy(_primary); }
bool healthy(uint8_t instance) const { return sensors[instance].healthy && sensors[instance].alt_ok && sensors[instance].calibrated; }
// check if all baros are healthy - used for SYS_STATUS report
bool all_healthy(void) const;
// pressure in Pascal. Divide by 100 for millibars or hectopascals
float get_pressure(void) const { return get_pressure(_primary); }
float get_pressure(uint8_t instance) const { return sensors[instance].pressure; }
// temperature in degrees C
float get_temperature(void) const { return get_temperature(_primary); }
float get_temperature(uint8_t instance) const { return sensors[instance].temperature; }
// accumulate a reading on sensors. Some backends without their
// own thread or a timer may need this.
void accumulate(void);
// calibrate the barometer. This must be called on startup if the
// altitude/climb_rate/acceleration interfaces are ever used
void calibrate(void);
// update the barometer calibration to the current pressure. Can
// be used for incremental preflight update of baro
void update_calibration(void);
// get current altitude in meters relative to altitude at the time
// of the last calibrate() call
float get_altitude(void) const { return get_altitude(_primary); }
float get_altitude(uint8_t instance) const { return sensors[instance].altitude; }
// get altitude difference in meters relative given a base
// pressure in Pascal
float get_altitude_difference(float base_pressure, float pressure) const;
// get scale factor required to convert equivalent to true airspeed
float get_EAS2TAS(void);
// get air density / sea level density - decreases as altitude climbs
float get_air_density_ratio(void);
// get current climb rate in meters/s. A positive number means
// going up
float get_climb_rate(void);
// ground temperature in degrees C
// the ground values are only valid after calibration
float get_ground_temperature(void) const { return get_ground_temperature(_primary); }
float get_ground_temperature(uint8_t i) const { return sensors[i].ground_temperature.get(); }
// ground pressure in Pascal
// the ground values are only valid after calibration
float get_ground_pressure(void) const { return get_ground_pressure(_primary); }
float get_ground_pressure(uint8_t i) const { return sensors[i].ground_pressure.get(); }
// set the temperature to be used for altitude calibration. This
// allows an external temperature source (such as a digital
// airspeed sensor) to be used as the temperature source
void set_external_temperature(float temperature);
// get last time sample was taken (in ms)
uint32_t get_last_update(void) const { return get_last_update(_primary); }
uint32_t get_last_update(uint8_t instance) const { return sensors[_primary].last_update_ms; }
// settable parameters
static const struct AP_Param::GroupInfo var_info[];
float get_calibration_temperature(void) const { return get_calibration_temperature(_primary); }
float get_calibration_temperature(uint8_t instance) const;
// HIL (and SITL) interface, setting altitude
void setHIL(float altitude_msl);
// HIL (and SITL) interface, setting pressure and temperature
void setHIL(uint8_t instance, float pressure, float temperature);
// HIL variables
struct {
AP_Buffer<float,10> press_buffer;
AP_Buffer<float,10> temp_buffer;
} _hil;
// register a new sensor, claiming a sensor slot. If we are out of
// slots it will panic
uint8_t register_sensor(void);
// return number of registered sensors
uint8_t num_instances(void) const { return _num_sensors; }
// enable HIL mode
void set_hil_mode(void) { _hil_mode = true; }
private:
// how many drivers do we have?
uint8_t _num_drivers;
AP_Baro_Backend *drivers[BARO_MAX_DRIVERS];
// how many sensors do we have?
uint8_t _num_sensors;
// what is the primary sensor at the moment?
uint8_t _primary;
struct sensor {
uint32_t last_update_ms; // last update time in ms
bool healthy:1; // true if sensor is healthy
bool alt_ok:1; // true if calculated altitude is ok
bool calibrated:1; // true if calculated calibrated successfully
float pressure; // pressure in Pascal
float temperature; // temperature in degrees C
float altitude; // calculated altitude
AP_Float ground_temperature;
AP_Float ground_pressure;
} sensors[BARO_MAX_INSTANCES];
AP_Float _alt_offset;
AP_Int8 _primary_baro; // primary chosen by user
float _last_altitude_EAS2TAS;
float _EAS2TAS;
float _external_temperature;
uint32_t _last_external_temperature_ms;
DerivativeFilterFloat_Size7 _climb_rate_filter;
bool _hil_mode:1;
void SimpleAtmosphere(const float alt, float &sigma, float &delta, float &theta);
};
#include "AP_Baro_Backend.h"
#include "AP_Baro_MS5611.h"
#include "AP_Baro_BMP085.h"
#include "AP_Baro_HIL.h"
#include "AP_Baro_PX4.h"
#endif // __AP_BARO_H__