mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 16:38:30 -04:00
97e09fa9b0
Original commit by fhedberg, had to fix merge conflicts and now it appears I did the commit?
498 lines
18 KiB
C++
498 lines
18 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <AP_HAL.h>
|
|
#include "AP_MotorsHeli_Single.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AP_MotorsHeli_Single::var_info[] PROGMEM = {
|
|
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
|
|
|
|
// @Param: SV1_POS
|
|
// @DisplayName: Servo 1 Position
|
|
// @Description: Angular location of swash servo #1
|
|
// @Range: -180 180
|
|
// @Units: Degrees
|
|
// @User: Standard
|
|
// @Increment: 1
|
|
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Single, _servo1_pos, AP_MOTORS_HELI_SINGLE_SERVO1_POS),
|
|
|
|
// @Param: SV2_POS
|
|
// @DisplayName: Servo 2 Position
|
|
// @Description: Angular location of swash servo #2
|
|
// @Range: -180 180
|
|
// @Units: Degrees
|
|
// @User: Standard
|
|
// @Increment: 1
|
|
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Single, _servo2_pos, AP_MOTORS_HELI_SINGLE_SERVO2_POS),
|
|
|
|
// @Param: SV3_POS
|
|
// @DisplayName: Servo 3 Position
|
|
// @Description: Angular location of swash servo #3
|
|
// @Range: -180 180
|
|
// @Units: Degrees
|
|
// @User: Standard
|
|
// @Increment: 1
|
|
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Single, _servo3_pos, AP_MOTORS_HELI_SINGLE_SERVO3_POS),
|
|
|
|
// @Param: TAIL_TYPE
|
|
// @DisplayName: Tail Type
|
|
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
|
|
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
|
|
// @User: Standard
|
|
AP_GROUPINFO("TAIL_TYPE", 4, AP_MotorsHeli_Single, _tail_type, AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO),
|
|
|
|
// @Param: SWASH_TYPE
|
|
// @DisplayName: Swash Type
|
|
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
|
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
|
|
// @User: Standard
|
|
AP_GROUPINFO("SWASH_TYPE", 5, AP_MotorsHeli_Single, _swash_type, AP_MOTORS_HELI_SINGLE_SWASH_CCPM),
|
|
|
|
// @Param: GYR_GAIN
|
|
// @DisplayName: External Gyro Gain
|
|
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
|
|
// @Range: 0 1000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("GYR_GAIN", 6, AP_MotorsHeli_Single, _ext_gyro_gain, AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN),
|
|
|
|
// @Param: PHANG
|
|
// @DisplayName: Swashplate Phase Angle Compensation
|
|
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
|
// @Range: -90 90
|
|
// @Units: Degrees
|
|
// @User: Advanced
|
|
// @Increment: 1
|
|
AP_GROUPINFO("PHANG", 7, AP_MotorsHeli_Single, _phase_angle, 0),
|
|
|
|
// @Param: COLYAW
|
|
// @DisplayName: Collective-Yaw Mixing
|
|
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
|
// @Range: -10 10
|
|
// @Increment: 0.1
|
|
AP_GROUPINFO("COLYAW", 8, AP_MotorsHeli_Single, _collective_yaw_effect, 0),
|
|
|
|
// @Param: FLYBAR_MODE
|
|
// @DisplayName: Flybar Mode Selector
|
|
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
|
|
// @Range: 0:NoFlybar 1:Flybar
|
|
// @User: Standard
|
|
AP_GROUPINFO("FLYBAR_MODE", 9, AP_MotorsHeli_Single, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
|
|
|
|
// @Param: TAIL_SPEED
|
|
// @DisplayName: Direct Drive VarPitch Tail ESC speed
|
|
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
|
|
// @Range: 0 1000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("TAIL_SPEED", 10, AP_MotorsHeli_Single, _direct_drive_tailspeed, AP_MOTOR_HELI_SINGLE_DDTAIL_DEFAULT),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
//
|
|
// public methods
|
|
//
|
|
|
|
// init
|
|
void AP_MotorsHeli_Single::Init()
|
|
{
|
|
AP_MotorsHeli::Init();
|
|
|
|
// disable channels 7 and 8 from being used by RC_Channel_aux
|
|
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_SINGLE_AUX]);
|
|
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_SINGLE_RSC]);
|
|
}
|
|
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsHeli_Single::set_update_rate( uint16_t speed_hz )
|
|
{
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
// setup fast channels
|
|
uint32_t mask =
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) |
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) |
|
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]);
|
|
hal.rcout->set_freq(mask, _speed_hz);
|
|
}
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
void AP_MotorsHeli_Single::enable()
|
|
{
|
|
// enable output channels
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); // swash servo 1
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); // swash servo 2
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3])); // swash servo 3
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); // yaw
|
|
hal.rcout->enable_ch(AP_MOTORS_HELI_SINGLE_AUX); // output for gyro gain or direct drive variable pitch tail motor
|
|
hal.rcout->enable_ch(AP_MOTORS_HELI_SINGLE_RSC); // output for main rotor esc
|
|
}
|
|
|
|
// output_test - spin a motor at the pwm value specified
|
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
|
void AP_MotorsHeli_Single::output_test(uint8_t motor_seq, int16_t pwm)
|
|
{
|
|
// exit immediately if not armed
|
|
if (!armed()) {
|
|
return;
|
|
}
|
|
|
|
// output to motors and servos
|
|
switch (motor_seq) {
|
|
case 1:
|
|
// swash servo 1
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm);
|
|
break;
|
|
case 2:
|
|
// swash servo 2
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm);
|
|
break;
|
|
case 3:
|
|
// swash servo 3
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm);
|
|
break;
|
|
case 4:
|
|
// external gyro & tail servo
|
|
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
|
|
write_aux(_ext_gyro_gain);
|
|
}
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm);
|
|
break;
|
|
case 5:
|
|
// main rotor
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_HELI_SINGLE_RSC]), pwm);
|
|
break;
|
|
default:
|
|
// do nothing
|
|
break;
|
|
}
|
|
}
|
|
|
|
// allow_arming - check if it's safe to arm
|
|
bool AP_MotorsHeli_Single::allow_arming() const
|
|
{
|
|
// returns false if main rotor speed is not zero
|
|
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _main_rotor.get_estimated_speed() > 0) {
|
|
return false;
|
|
}
|
|
|
|
// all other cases it is OK to arm
|
|
return true;
|
|
}
|
|
|
|
|
|
// set_desired_rotor_speed
|
|
void AP_MotorsHeli_Single::set_desired_rotor_speed(int16_t desired_speed)
|
|
{
|
|
_main_rotor.set_desired_speed(desired_speed);
|
|
|
|
if (desired_speed > 0 && _tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
|
_tail_rotor.set_desired_speed(_direct_drive_tailspeed);
|
|
} else {
|
|
_tail_rotor.set_desired_speed(0);
|
|
}
|
|
}
|
|
|
|
|
|
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
|
|
void AP_MotorsHeli_Single::recalc_scalers()
|
|
{
|
|
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_SETPOINT) {
|
|
_tail_rotor.set_ramp_time(0);
|
|
_tail_rotor.set_runup_time(0);
|
|
_tail_rotor.set_critical_speed(0);
|
|
} else {
|
|
_main_rotor.set_ramp_time(_rsc_ramp_time);
|
|
_main_rotor.set_runup_time(_rsc_runup_time);
|
|
_main_rotor.set_critical_speed(_rsc_critical);
|
|
}
|
|
|
|
_main_rotor.recalc_scalers();
|
|
|
|
if (_rsc_mode != AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
|
_tail_rotor.set_ramp_time(0);
|
|
_tail_rotor.set_runup_time(0);
|
|
_tail_rotor.set_critical_speed(0);
|
|
} else {
|
|
_tail_rotor.set_ramp_time(_rsc_ramp_time);
|
|
_tail_rotor.set_runup_time(_rsc_runup_time);
|
|
_tail_rotor.set_critical_speed(_rsc_critical);
|
|
}
|
|
|
|
_tail_rotor.recalc_scalers();
|
|
}
|
|
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
uint16_t AP_MotorsHeli_Single::get_motor_mask()
|
|
{
|
|
// heli uses channels 1,2,3,4,7 and 8
|
|
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_SINGLE_AUX | 1U << AP_MOTORS_HELI_SINGLE_RSC);
|
|
}
|
|
|
|
// sends commands to the motors
|
|
void AP_MotorsHeli_Single::output_armed_stabilizing()
|
|
{
|
|
move_swash(_roll_control_input, _pitch_control_input, _throttle_control_input, _yaw_control_input);
|
|
|
|
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
|
_tail_rotor.output_armed();
|
|
|
|
if (!_tail_rotor.is_runup_complete())
|
|
{
|
|
_heliflags.rotor_runup_complete = false;
|
|
return;
|
|
}
|
|
}
|
|
|
|
_main_rotor.output_armed();
|
|
|
|
_heliflags.rotor_runup_complete = _main_rotor.is_runup_complete();
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsHeli_Single::output_disarmed()
|
|
{
|
|
move_swash(_roll_control_input, _pitch_control_input, _throttle_control_input, _yaw_control_input);
|
|
|
|
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
|
_tail_rotor.output_disarmed();
|
|
}
|
|
|
|
_main_rotor.output_disarmed();
|
|
|
|
_heliflags.rotor_runup_complete = false;
|
|
}
|
|
|
|
// reset_servos
|
|
void AP_MotorsHeli_Single::reset_servos()
|
|
{
|
|
reset_swash_servo (_servo_1);
|
|
reset_swash_servo (_servo_2);
|
|
reset_swash_servo (_servo_3);
|
|
}
|
|
|
|
// init_servos
|
|
void AP_MotorsHeli_Single::init_servos()
|
|
{
|
|
init_swash_servo (_servo_1);
|
|
init_swash_servo (_servo_2);
|
|
init_swash_servo (_servo_3);
|
|
|
|
_servo_4.set_angle(4500);
|
|
}
|
|
|
|
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
|
void AP_MotorsHeli_Single::calculate_roll_pitch_collective_factors()
|
|
{
|
|
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
|
|
|
|
// roll factors
|
|
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
|
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
|
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
|
|
|
// pitch factors
|
|
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - (_phase_angle + _delta_phase_angle)));
|
|
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - (_phase_angle + _delta_phase_angle)));
|
|
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - (_phase_angle + _delta_phase_angle)));
|
|
|
|
// collective factors
|
|
_collectiveFactor[CH_1] = 1;
|
|
_collectiveFactor[CH_2] = 1;
|
|
_collectiveFactor[CH_3] = 1;
|
|
|
|
}else{ //H1 Swashplate, keep servo outputs seperated
|
|
|
|
// roll factors
|
|
_rollFactor[CH_1] = 1;
|
|
_rollFactor[CH_2] = 0;
|
|
_rollFactor[CH_3] = 0;
|
|
|
|
// pitch factors
|
|
_pitchFactor[CH_1] = 0;
|
|
_pitchFactor[CH_2] = 1;
|
|
_pitchFactor[CH_3] = 0;
|
|
|
|
// collective factors
|
|
_collectiveFactor[CH_1] = 0;
|
|
_collectiveFactor[CH_2] = 0;
|
|
_collectiveFactor[CH_3] = 1;
|
|
}
|
|
}
|
|
|
|
//
|
|
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
|
// - expected ranges:
|
|
// roll : -4500 ~ 4500
|
|
// pitch: -4500 ~ 4500
|
|
// collective: 0 ~ 1000
|
|
// yaw: -4500 ~ 4500
|
|
//
|
|
void AP_MotorsHeli_Single::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
|
|
{
|
|
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
|
|
if (_servo_manual == 1) {
|
|
_roll_control_input = _roll_radio_passthrough;
|
|
_pitch_control_input = _pitch_radio_passthrough;
|
|
_throttle_control_input = _throttle_radio_passthrough;
|
|
_yaw_control_input = _yaw_radio_passthrough;
|
|
}
|
|
|
|
int16_t yaw_offset = 0;
|
|
int16_t coll_out_scaled;
|
|
|
|
// initialize limits flag
|
|
limit.roll_pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)?
|
|
// check if we need to free up the swash
|
|
if (_heliflags.swash_initialised) {
|
|
reset_swash();
|
|
}
|
|
// To-Do: This equation seems to be wrong. It probably restricts swash movement so that swash setup doesn't work right.
|
|
// _collective_scalar should probably not be used or set to 1?
|
|
coll_out_scaled = coll_in * _collective_scalar + _throttle_radio_min - 1000;
|
|
}else{ // regular flight mode
|
|
|
|
// check if we need to reinitialise the swash
|
|
if (!_heliflags.swash_initialised) {
|
|
init_swash();
|
|
}
|
|
|
|
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
|
|
// across the input range instead of stopping when the input hits the constrain value
|
|
// these calculations are based on an assumption of the user specified roll_max and pitch_max
|
|
// coming into this equation at 4500 or less, and based on the original assumption of the
|
|
// total _servo_x.servo_out range being -4500 to 4500.
|
|
roll_out = roll_out * _roll_scaler;
|
|
if (roll_out < -_roll_max) {
|
|
roll_out = -_roll_max;
|
|
limit.roll_pitch = true;
|
|
}
|
|
if (roll_out > _roll_max) {
|
|
roll_out = _roll_max;
|
|
limit.roll_pitch = true;
|
|
}
|
|
|
|
// scale pitch and update limits
|
|
pitch_out = pitch_out * _pitch_scaler;
|
|
if (pitch_out < -_pitch_max) {
|
|
pitch_out = -_pitch_max;
|
|
limit.roll_pitch = true;
|
|
}
|
|
if (pitch_out > _pitch_max) {
|
|
pitch_out = _pitch_max;
|
|
limit.roll_pitch = true;
|
|
}
|
|
|
|
// constrain collective input
|
|
_collective_out = coll_in;
|
|
if (_collective_out <= 0) {
|
|
_collective_out = 0;
|
|
limit.throttle_lower = true;
|
|
}
|
|
if (_collective_out >= 1000) {
|
|
_collective_out = 1000;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
// ensure not below landed/landing collective
|
|
if (_heliflags.landing_collective && _collective_out < _land_collective_min) {
|
|
_collective_out = _land_collective_min;
|
|
limit.throttle_lower = true;
|
|
}
|
|
|
|
// scale collective pitch
|
|
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
|
|
|
|
// rudder feed forward based on collective
|
|
// the feed-forward is not required when the motor is shut down and not creating torque
|
|
// also not required if we are using external gyro
|
|
if ((_main_rotor.get_desired_speed() > 0) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
|
|
// sanity check collective_yaw_effect
|
|
_collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE);
|
|
yaw_offset = _collective_yaw_effect * abs(_collective_out - _collective_mid_pwm);
|
|
}
|
|
}
|
|
|
|
// swashplate servos
|
|
_servo_1.servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1.radio_trim-1500);
|
|
_servo_2.servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2.radio_trim-1500);
|
|
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_H1) {
|
|
_servo_1.servo_out += 500;
|
|
_servo_2.servo_out += 500;
|
|
}
|
|
_servo_3.servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3.radio_trim-1500);
|
|
|
|
// use servo_out to calculate pwm_out and radio_out
|
|
_servo_1.calc_pwm();
|
|
_servo_2.calc_pwm();
|
|
_servo_3.calc_pwm();
|
|
|
|
// actually move the servos
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo_1.radio_out);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo_2.radio_out);
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo_3.radio_out);
|
|
|
|
// update the yaw rate using the tail rotor/servo
|
|
output_yaw(yaw_out + yaw_offset);
|
|
}
|
|
|
|
// output_yaw
|
|
void AP_MotorsHeli_Single::output_yaw(int16_t yaw_out)
|
|
{
|
|
_servo_4.servo_out = constrain_int16(yaw_out, -4500, 4500);
|
|
|
|
if (_servo_4.servo_out != yaw_out) {
|
|
limit.yaw = true;
|
|
}
|
|
|
|
_servo_4.calc_pwm();
|
|
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo_4.radio_out);
|
|
|
|
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
|
|
// output gain to exernal gyro
|
|
write_aux(_ext_gyro_gain);
|
|
} else if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH && _main_rotor.get_desired_speed() > 0) {
|
|
// output yaw servo to tail rsc
|
|
write_aux(_servo_4.servo_out);
|
|
}
|
|
}
|
|
|
|
// write_aux - outputs pwm onto output aux channel (ch7)
|
|
// servo_out parameter is of the range 0 ~ 1000
|
|
void AP_MotorsHeli_Single::write_aux(int16_t servo_out)
|
|
{
|
|
_servo_aux.servo_out = servo_out;
|
|
_servo_aux.calc_pwm();
|
|
hal.rcout->write(AP_MOTORS_HELI_SINGLE_AUX, _servo_aux.radio_out);
|
|
} |